
Refinement of Alternation Traces
in Context of

Model-Driven Change Management

Master Thesis
submitted by

Mariya Denysova

supervised by
Prof. Dr. Friedrich H. Vogt

Prof. Dr. Ralf Möller

Hamburg University of Technology
Institute of Telematics

An overview of the existing software engineering approaches for the solution of
software evolution and complexity problem is executed with the focus to the Model-
Driven Software Development approach. The problem of software evolution is closely
related to the meta-model evolution problem. The existing related work in this area
is studied and the approach of models migration when their meta-model is changed
is described. The first stage of this process is the detection and classification of
changes. The focus of the current work is the detection and classification of meta-
model changes using tracing approach and enriching the traced information with
the semantical constraints of the EMF Ecore meta-meta model. The design of a
meta-model for change classification is proposed and the transformation enriching
the standard EMF traces with Ecore semantics is developed.

Declaration

I declare that:
this work has been prepared by myself,
all literal or content based quotations are clearly pointed out,
and no other sources or aids than the declared ones have been used.

Hamburg, 1.10.2007
Mariya Denysova

I would like to thank Prof. Friedrich H. Vogt, for giving me the opportunity to
perform this Master Thesis under his supervision, demonstrated interest in my work
and provided useful critics. I am also grateful to Boris Gruschko from SAP AG, who
gave me such an interesting topic for my research. Separately I want to thank Simon
Zambrovski, who was not only a technical adviser for me during this half a year,
but a close friend, teacher, co-thinker and strict critic. His explanations, patience,
readiness to hear and evaluate even my wrong ideas, turned these six month not only
to efficient work, but also to a real pleasure.

Contents

1 Introduction 11
1.1 Motivation: Software Evolution Causes Software Complexity 12
1.2 Approaches to Evolution and Complexity Problem 13
1.3 Scope of this Thesis . 14

2 MDSD: Predecessors. Complexity Issues 15
2.1 Software Development Process Perspective 15

2.1.1 Traditional development process 16
2.1.2 Agile software development methodologies 17

2.2 Modeling Approaches . 17
2.2.1 Software Modeling . 17
2.2.2 Problem Modeling . 18
2.2.3 Mapping between Domain and Solution Spaces 20

2.3 Software Decomposition Perspective 21
2.3.1 Component Technologies . 21
2.3.2 Frameworks . 22
2.3.3 Generative Programming . 23

2.4 Model-Driven Software Development 24
2.4.1 Frameworks and Applications 25
2.4.2 Model-Driven Change Management 25

2.5 Motivation: Why SAP Goes for MDSD? 26
2.6 Summary . 27

3 MDSD: Notions and Concepts 29
3.1 Definition of Main Notions . 29

3.1.1 Model-Driven Design . 29
3.1.2 Model-Driven Development . 31

3.2 Meta-Modeling Explained . 32
3.2.1 Levels of Meta-Modeling . 32
3.2.2 Modeling as Formal Real World Description 33
3.2.3 Relation between models and the meta-meta-model 34
3.2.4 Ecore Meta-Meta-Model Structure 34

3.3 MDSD Tool Support . 36

4 Metamodel Evolution Problem Analysis 37
4.1 Problem Description . 37

4.1.1 Example: Meta-Model Changes 37
4.2 Changes Classification . 41
4.3 Proposed General Workflow for Model Migration 43
4.4 Change Detection Approaches . 43

5

6 CONTENTS

4.4.1 Direct Comparison . 44
4.4.2 Change Tracing . 44

4.5 Related Work . 45
4.5.1 Domain Evolution. Description of Domain Model Migration . . 45
4.5.2 Change Classification and Representation 45
4.5.3 Automatic Difference Detection 46

4.6 Summary . 47

5 EMF Tracing Approach For Change Detection 49
5.1 Tracing in Computer Science . 49
5.2 Generic EMF Tracer . 50

5.2.1 Change meta-model . 50
5.3 Ecore Semantics: Influence to the M1 models 51

5.3.1 EMF Tracer Semantical Constraints: Containments 52
5.3.2 EMF Tracer Semantical Constraints: Referenced Objects . . . 53
5.3.3 EMF Tracer Semantical Constraints: One-to-many References 53

5.4 Tracing the meta-model Changes with the EMF Tracer 53
5.4.1 Trace Refinement Problem Description 54

6 Trace Refinement 55
6.1 Requirements to the meta-model For Change Classification 55
6.2 Semantics of Ecore Modeling Concepts 56
6.3 Composite Changes Analysis . 56

6.3.1 Additions . 56
6.3.2 Deletions . 57
6.3.3 Changes of StructuralFeatures 58

6.4 Design of the Refined meta-model . 58
6.4.1 Composite Changes . 58
6.4.2 Change Classification Structure 59
6.4.3 Association Classes . 59
6.4.4 Association Classes Structure 60

7 Transforming Change MM to the Refined MM 63
7.1 Transformation Configuration . 63
7.2 Initializing Transformation . 65
7.3 Refining Transformation . 66

7.3.1 Scalability with Meta-Model Size 67

8 Conclusions and Future Work 69
8.1 Summary . 69
8.2 Results and Conclusions . 70
8.3 Future Work . 70

A Change Metamodel Complete 73

B Ecore Meta-Meta-Model Complete 75

C XMI Representation 77
C.1 XMI Representation of BPMN Process Model 77
C.2 XMI Representation of BPMN Meta Model 78

D Classification of Ecore Meta Model Changes 79

CONTENTS 7

E Change Classes Hierarchy 81

8 CONTENTS

List of Figures

2.1 General Structure of a Software System 18
2.2 Mapping between problem space and solution space [CE00] 20
2.3 General Structure of a Framework . 23

3.1 Concept formation: modeling and DSLs [SVC06] 30
3.2 Concept formation: transformations [SVC06] 32
3.3 Levels of meta modeling . 33
3.4 Ecore Meta-Meta-Model . 35

4.1 Expense Reimbursement Process . 38
4.2 BPMN Meta-Model Subset . 38
4.3 Expense Reimbursement Process: Timeout Constraints Added 39
4.4 BPMN Meta-Model Subset: Addition of Timers 39
4.5 Expense Reimbursement Process: Illustrating a Subprocess 40
4.6 BPMN Meta-Model Subset: Addition of Tasks and Subprocesses . . . 41
4.7 Kinds of meta-model Changes According to the Impact on the Corre-

sponding models . 42
4.8 Model Migration Process Model . 43
4.9 Change Detection: Direct Comparison 44
4.10 Model Migration Process Model . 45

5.1 EMF Tracer Change meta model . 51

6.1 Main Change Supertypes . 59
6.2 Example: Classification of the Class Changes 60
6.3 Association Class Heierarchy . 61

7.1 General Transformation Scheme . 64
7.2 Two-Phase Transformation Scheme . 64

A.1 Change Meta-Model . 73

B.1 Ecore Meta-Meta-Model . 75

E.1 Change Classes Hierarchy . 82

9

10 LIST OF FIGURES

Chapter 1

Introduction

This is a Thesis on Software Engineering. This means that however specific the task
described here is, the main value of the current work is another step towards the so-
lution of the general software engineering problem: to shift the software development
process from the world of unpredictability, creativeness and constantly increasing sys-
tem disorder to the world of strict engineering rules, laws, strategies and structures.

The term “Software Engineering” was first popularized in 1968 during the NATO
Software Engineering Conference (held in Garmisch, Germany) and has been in
widespread use since. The official report from this conference introduced the main
notions and challenges of Software Engineering like Software Requirements, Design
Process, Problems of Scale, Reliability and Performance, Software Maintenance and
Evaluation. Since then the computer scientists all over the world were arguing, if the
process of software development is a real engineering process. One of the well know
opponents of Software Engineering was Donald Knuth, who insisted that program-
ming is an art. Still after 40 years of intensive research in this area and increasing
growing amount of the commercial software development it is an opened question.

The need for building an engineering science around the software development
process arose from the problem of constantly increasing size and complexity of the
software systems. To illustrate the problem let’s consider the process of software de-
velopment from the point of view of an art. A skilled and talented software developer
can come with a genius piece of software as a talented painter can paint an out-
standing paint. Now lets imagine that we need to develop a great complex software
system. To do that we would hire 200 skilled programmers. What would be their
result? Approximately the same as in case of hiring 200 hundred talented painters to
paint a picture with the size of the area of Vatican. Unless 200 painters would agree
on the strict working strategies, style of painting, used colors etc. the result would
be unpredictable and bad. People usually speak of genius artists as bright individu-
als, whereas the successful team work is possible only under the strictly established
process.

After 40 years the role of Software Engineering as an engineering process is com-
monly understood, Software Engineering methodology evolved and matured, yet not
everywhere accepted as a real science (e.g. Russia). Software processes and ap-
proaches give tremendous support for the commercial software development. Still
Software Engineering remains quite fuzzy and non-precise, having lots of the ques-
tions unanswered. Again and again new software development projects fail to meet
time and quality requirements, software systems evolve with more and more increas-
ing complexity. Software development projects experience all problems and challenges
of innovative projects like unpredictability, creativeness and high risks, but also has

11

12 CHAPTER 1. INTRODUCTION

to solve its own, unique for software area difficulties. One of them is the Software
Evolution problem.

Nowadays the software systems support every business area. The laws of market
economy prescribe constantly changing and self regulating nature of the businesses on
the market. The market situation influences each separate company, there for each
company have to constantly adjust its business activity to the market needs. Therefore
the software systems, supporting each business have to be constantly changed.

But why these changes bring constantly increasing complexity to the software
systems supporting the businesses, if they don’t bring it the the businesses themselves.

1.1 Motivation: Software Evolution Causes Soft-
ware Complexity

From the first site the most cost consuming part of the software development is the
stage of the software creation. Once the software has been created it could be easily
deployed for the customers almost for free. Unfortunately nowadays it is commonly
understood, that the most expensive is the maintenance of the software in the sense
of the constant adjustments to the new business environment. According to [Pre00],
industry data indicate that between 60 and 80 percent of all effort expended on
software is expended after this software is delivered to the customer for the first time
and the substantial part of these costs is caused by the side effects of the introduced
software changes. These side effects occur because due to the interconnections in the
system each change almost always cannot be treated separately and has its influence
to the whole system resulting to the need of new system adjustments. This shows
that big amount of interconnections, i.e. high level of coupling between structural
elements of a system, results to the lower maintainability of a system. As it is shown
in [McM95, Mey88] modularity and loose coupling are important principles that allow
to improve of software maintainability and manageability. Module is treated here as
the basic unit of decomposition of software systems, irrespectively of its actual type:
class, component, or their combination.

Therefore, the level of “coupling” in the system expresses one of the aspect of
system complexity, namely its structural (architectural) complexity, which is one of the
approaches for assessing the overall complexity of a system architecture [Pre00, LB06].
Generally, the term “complexity” may include much more system characteristics like
computational complexity (algorithmic), logical complexity etc. (see [LB06, Pre00,
Goo04, McM95, Fen94]). In the current work, when speaking of complexity, we imply
mainly the structural complexity.

The reason, of the constantly growing complexity of a software system lies in the
digital nature of software. Namely, we can distinguish the following problems:

• The first reason originates from the fact that there is no known way to cre-
ate error-free software. Every time the software is changed these mistakes are
accumulating.

• Another reason has pure sociological nature. Because the cost of an already
written code almost equals to zero, people are inclined to copy or live the old
code and add additional features to it, instead of throwing it away and replacing
with the new one. There, the old mistakes are not replaced by the possible new
ones, but the new ones are added to the old ones.

It is quite obvious, why this issue only applies for Software Engineering. If we
were producing automobiles, then in case of invention of a new better technology

1.2. APPROACHES TO EVOLUTION AND COMPLEXITY PROBLEM 13

for producing car engines, we would not start the production of cars, which
would have two different engines inside. We would delete everything from our
new car model that is not needed, because the to produce not needed parts
requires material and working hours. In case of software development to leave
unneeded parts is easier then to delete them, especially if it is not clear, which
parts are really not needed.

• One more reason reason is that each next version of a system have to hold and
operate with all the previously collected data as well as working with the new
data, probably with the changed data structure.
So in case a car producing business is switched on to the production of new car
engines, the support for production of old car engines usually remains in the
software system.

The first research attempts on the topic of Software Evolution were undertaken
almost simultaneously with the birth of Software Engineering. The pioneer in this
area is Meir Manny Lehman, who documented the evolutionary characteristics of the
mainframe operating system, OS/360 to IBM in 1969 [Leh69] and later, in 1985,
expanded the study to other programs in his book “Program Evolution: Processes
of Software Change”[LB85]. In these early works Lehman formulates his first three
laws of software evolution, which were later extended to 8 [Leh96]. The general idea
of Lehman’s laws is that a software system has to be progressively changed to satisfy
users needs which in its turn cause the constant increasing of system disorder.

Back then in the 80s the main effort was put to answer the question: “How soft-
ware evolves, what are the dynamics and the laws of increasing software complexity?”
Nowadays the focus has changed. The Software Evolution studies became a Software
Engineering issues and are mostly focusing on the software change management ques-
tions, i.e.: “Which approaches can efficiently slow down the increasing complexity of
evolving systems?”.

1.2 Approaches to Solve the Software Evolution and
Complexity Problem

Lehman was looking for the answer to this question in the software development pro-
cess. Current software development processes like Rational Unified Process [Kru03,
JBR99], Waterfall and Iterative Programming as well as modern Agile Methods
among other issues target to solve also the Software Evolution problem. All these
approaches pay attention to the importance of modeling techniques as an analogy to
the modeling in the general engineering science. These modeling techniques brought
to life sketches, diagrams, drawings and specifications of different kinds, which were
meant to become an instrument to share knowledge among the team members and to
transfer it between software phases. This also required the corresponding modeling
rules, modeling languages as well as their tool support.

Another approach to solve the Software Evolution problem was to decompose
and structure the software code itself [Jac86]. Modules, classes, components and
frameworks all these well known structural software artifacts arose from this approach.
The next step in this direction brought to the idea that to decrease the entrophy and
make the code less error-prone it is reasonable not to hand write and copy/paste
but to generate the routine, repetitive code, thus making the separation between the
application logic code and the infrastructure code.

The combination of modeling and code generation techniques resulted into Model
Driven Software Development approach, where the model and the code are the two

14 CHAPTER 1. INTRODUCTION

perspectives to the same software program. Therefore, the problem of software evo-
lution implies the model evolution issues.

The current Thesis will give the explanation of the advantages of the Model Driven
Software Development comparing to other software development approaches with re-
spect to the Software Evolution Problem. It will also discuss the different aspects
of Model Driven Software Evolution and will give a general approach towards the
solution of the Model Evolution problem.

1.3 Scope of this Thesis

This thesis is a thesis about the application of Software Engineering methodologies for
the development of large enterprise software systems. The methodologies described in
this thesis, and the conclusions made from the discussed approaches are done under
this assumption, and may not hold in other domain areas.

Chapter 2

Motivation for Model-Driven
Software Development
(MDSD): Predecessors,
Problems, Relation to
Software Complexity

As it was already said, Software Engineering is a science about the methodologies
applied to increase the speed and quality of software development as well as to decrease
the development cost. One constraint on the way to achieving these goals is the
Software Evolution problem. In this chapter we will discuss the existing trends in the
Software Engineering and their relation to the problem of Software Evolution.

2.1 Software Development Process Perspective

All the development methodologies aim at structuring the working process in the
development team, establishing the workflow scenarios, improving the communication
and information exchange, therefore, gaining the positive synergy from the teamwork.

Naturally, the software development process resemble a general problem solving
loop [Rac95]:

1. Fist, the problem is defined, which is usually done on the stage of requirements
definition and analysis.

2. Then the solution is developed, which corresponds to the design phase.

3. The solution is produced and integrated (development and integration phases).

4. The result is archived and analyzed.

After this four stages the problem seems to be solved. However, usually after the
result is achieved, its analysis brings to the detection of related problems, the problem
is extended, refined or generalized and the loop is repeated.

Therefore, all the development methodologies have these stages in common and
differentiate mostly in the ways for their composition, iteration, exact deliverables
produced on each of them and the approaches of knowledge transfer in between.

15

16 CHAPTER 2. MDSD: PREDECESSORS. COMPLEXITY ISSUES

We can distinguish between the traditional development processes and modern
Agile approaches.

2.1.1 Traditional development process

Historically, the first model of the software development process was the waterfall
model, a model of the sequential software development [Roy70]. Abstraction is the
key mechanism in this model. The early stages of the development process are the
stages where the system is considered on the higher abstraction level. From analysis
through design and to the development phase the system is being constantly refined.
The abstract representation of a system is expressed in form of natural language
(specifications and other documentation) or a modeling language (graphical represen-
tation). Abstract modeling of a system managed to bring better clarity to the system
structure.

Unfortunately, this development process was completely uncapable of adjusting to
the changing requirements to the software. The natural solution in this case was to
repeat the whole process, which brought to the invention of the iterative models.

The iterative development process is considered to be more efficient, because in
most cases it is impossible to conduct the initial fundamental analysis of the whole
problem space, to define and foresee all the related problems and their effects and to
build the corresponding design decisions.

Another disadvantage of the waterfall process is that users see and are able to
evaluate the developed software only after the development is finished. The user
assessment and suggestions cannot be taken into account during the development
process. Rapid prototype creation helps getting the relevant user feedback.

Two extreme cases in the development process can take place:

• The waterfall development, when the attempt is made to design the whole sys-
tem on the first iteration, which is not successful in most cases and the “fear of
unanticipated requirements often leads to overengineering” [Eva03].

• The other extreme, when the whole development is an endless series of proto-
types. Each such prototype is “the simplest thing that could possibly work”
[Bec00], which is iteratively refactored and refined. This can bring to the sit-
uation when “the attempt to avoid overengineering can develop into a fear of
doing any deep design thinking at all”[Eva03] and often results to a messy un-
structured solution.

Therefore, the type of a problem, the level of uncertainty and risks should be
considered to balance successfully the actual development process between these two
extremes. An appropriate adjustment of iterative methodology and tool support can
also shift this balance towards rapid prototyping development.

The form of iterative development, when the waterfall model is simply repeated,
proved to be uncapable of reacting to fast changes to the system requirements.
Changes were often much more easier to be introduced on the source code level,
without any need to to clarify the picture on the more abstract model level. There-
fore, only the development stage was often involved into iterative process. The need
to update models or write documentation became just an overhead and was often
omitted. This resulted to the gap between the models and the source code.

The need for the efficient methodological and tool support of iterative development
resulted to the invention of the new, agile software development methodologies.

2.2. MODELING APPROACHES 17

2.1.2 Agile software development methodologies

If the traditional development processes aim to the decomposition of the development
process, assigning responsibilities to each team member and the information flow
(“communication”) between the developers by means of documentation, the main fo-
cus of agile methods is the best integration of the developers in the whole development
“game”. This is done by refusing from writing much documentation for code clari-
fication and organizing personal communication inside the team in forms of regular
meetings, discussions and seminars, using a blackboard and a piece of chalk. This
promised to guarantee, that only cornerstone questions are discussed and modeled
instead of writing documentation which may appear to be never used by anybody.

An important role in Agile methods is played by the the software code itself.
After the overhead nature of models and documentation in some projects was clearly
understood, the importance of program code itself increased. The developers realized
the need and usefulness of a step from high-level abstract models down to source code
paradigms. One of the reasons, why this step became possible, was the recognized
usefulness of programming paradigms called “patterns” [GHJV95], which are general
purpose source code abstractions. Their semantics is general, commonly known by
all developers and independent of the application domain and developed system.

2.2 Modeling Approaches

As it was said before an important software design mechanism is abstraction. The
result of applying abstraction mechanism is expressed in models, which help to neglect
the irrelevant details to understand the system structure. Models are the artificial
temporary system simplifications, which are further refined. Often this refinement is
merely a routine, which is desired to be automated.

The process of modeling is always a process of finding proper abstractions. The
question here always is: what is a “propper” abstraction? Unfortunately, there could
be no formal way to define the term “proper abstraction” as well as there is no strict
rule on how to find them.

The capability of making abstractions is a unique property of human mind and is
expressed through our natural human language. No animal as well as no computer
is able to do that. How the human mind makes “proper” abstractions is the focus
of studies of Artificial Intelligence field. Until the scientists of this field do not un-
derstand this mechanism, no formal laws on how to do good abstractions could be
done. Still different practitioners managed to work out some recommendations on
this topic, often referring to modeling as art [Lie06, Eva03].

The software engineers classify modeling by the object of modeling as following:

software modeling - the abstract representation of the software system used by
engineers during the development process;

problem modeling - is the collection of software requirements as described by the
customer of the software system or its future users, expressed in form of a specific
professional language, using domain specific notions.

2.2.1 Software Modeling

The software modeling is the abstract representation of the solution to be developed.
In this sense it is similar to the design plans or construction plans used in all other
engineering disciplines.

18 CHAPTER 2. MDSD: PREDECESSORS. COMPLEXITY ISSUES

System Environment

System

Functionality

P
ro

ce
ss

in
g

B
ui

ld
in

g
V

ie
w

sInputs Outputs

Figure 2.1: General Structure of a Software System

The software modeling is closely related to the aspects and building blocks of
software architectures. The different types of the software architectures are relatively
well understood. Therefore, the methodology for its modeling can be done.

Historically the problem of software modeling on the first stage developed towards
the unification of modeling languages and modeling process. The peak of this process
was the invention and popularization of Unified Modeling Language (UML), which
“is as general-purpose visual modeling language that is used to specify, visualize,
construct, and document the artifacts of a software system” [RJB99]. This means,
that UML is a language for modeling all kinds of software artifacts, and possess
required expressiveness for that.

The standardization of UML facilitated the communication among the developers,
because this language was well understood by everybody. Every developer could read
it and make the design using it. Because UML was a common language for expressing
software abstractions, different tools (UML-tools) were developed, capable to generate
source code skeletons out of UML documents often called Computer-aided software
engineering tools (CASE-tools).

2.2.2 Problem Modeling

The functional software requirements can be considered as problem descriptions, that
must be solved by the software.

On one hand, to describe these requirements the specific professional language (do-
main language) is used by the business people working in these business environment
(domain experts). The term “domain” is often assigned somewhat different meanings
by different researchers and practitioners. The commonality of all definitions can be
expressed as following [BRJ05]:

Domain: An area of knowledge or activity characterized by a set of concepts and
terminology understood by practitioners in that area.

On the other hand any software system is an open system as defined by the
General System Theory [Bar93] and is a part of a larger business system (see figure
2.1). This means that a software system should fit into the business environment,
i.e have knowledge about the structure of this business system, as well as to fulfill

2.2. MODELING APPROACHES 19

definite functional requirements, that depend on information inputs from business
environment and influence this business environment with some output actions.

Therefore, software requirements are defined with respect to the actual business
processes that exist in the given business system. Consequently, the models of the
existing business environment/business processes are needed as instruments to express
these requirements. These models are usually called domain models, and the process
of building such models is called domain modeling.

So, domain models are the instruments to express the sets of software requirements
as well as the basis for building the software solution, which has to implement these
requirements and have knowledge about the business environment of the software
systems.

Unlike the software modeling that express abstractions of software artifacts the
problem modeling is the modeling of the business environment and the software re-
quirements that are inputs and outputs to the software system. The problem mod-
eling is usually done by the business experts who express the problems, they want
to solve by the software system, while the software modeling is done by the soft-
ware developers, who want to express, how they are going to solve these problems.
To some extent, software modeling is a domain modeling, where the domain are the
different architectural software artifacts and the software developers are the domain
experts. Therefore, we can say that software modeling covers only one domain area
and, consequently, is easier and better understood, than modeling of the verity of
other domains.

The area of different problems domains is wide. Each software solution innovative,
because it is done for a special, unique, problem. Therefore good recommendations for
the doing successful domain-specific abstractions are much more difficult to be done
and modeling of a domain area is resembles more the notion of art. Domain-driven
design is an approach to develop software systems when the domain model plays the
central role in the whole development process.

Domain Specific Languages (DSLs)

In the section 1.1 the term software complexity was introduced, as well as some
reasons causing the software complexity. One of the reasons to for the software to be
complex, is the complexity of the domain for which this software is built.

Among lots of the definitions of complexity some define complexity, to be equiv-
alent to the amount of the information required for the description of the complex
object or system. The linguists give the following definition of complexity [Här69]:

Complexity: the property of a system or a model, that makes descriptions of the
complete behavior in a random (or in any) language difficult, even if the infor-
mation of all components and it’s relations is available.

According to this definition not every language is capable of describing complex
domain in the best possible way. UML was quite useful for abstract modeling of
software artifacts, but appeared to be quite inconvenient for describing the complex
domains precisely, clearly and briefly. The Object Management Group (OMG), the
UML standardization organization suggests to use UML profiles to express as the em-
bedded domain-specific language to express the domain-specific concepts. Another
possible way is to use separate domain-specific languages (DSL’s) for domain mod-
eling. A well defined DSL should require less information for describing the domain
models and have to be intuitively understood by the domain experts.

20 CHAPTER 2. MDSD: PREDECESSORS. COMPLEXITY ISSUES

implementation−
Mapping

Problem space

domain−specific
abstractions

Solution space

abstractions
oriented

Fig. 2. Mapping between problem space and solution space

in an organization, e.g., separate or joint product-development and domain-
engineering teams, are discussed in [17].

Domain engineering can be applied at different levels of maturity. At mini-
mum, domain analysis activities can be used to establish a common terminology
among different product-development teams. The next level is to introduce a
common architecture for a set of systems. Further advancement is to provide a
set of components covering parts or all of the systems in the system family. Fi-
nally, the assembly of these components can be partially or fully automated using
generators and/or configurators. The last level represents the focus of generative
software development. In general, the generated products may also contain non-
software artifacts, such as test plans, manuals, tutorials, maintenance guidelines,
etc.

4 Mapping Between Problem Space and Solution Space

A key concept in generative software development is that of a mapping between
problem space and solution space (see Figure 2), which is also referred to as a
generative domain model. Problem space is a set of domain-specific abstractions
that can be used to specify the desired system-family member. By “domain-
specific” we mean that these abstractions are specialized to allow application
engineers to express their needs in a way that is natural for their domain. For
example, we might want to be able to specify payment methods for an electronic
commerce system or matrix shapes in matrix calculations. The solution space,
on the other hand, consists of implementation-oriented abstractions, which can
be instantiated to create implementations of the specifications expressed using
the domain-specific abstractions from the problem space. For example, payment
methods can be implemented as calls to appropriate web services, and differ-
ent matrix shapes may be realized using different data structures. The mapping
between the spaces takes a specification and returns the corresponding imple-
mentation.

Figure 2.2: Mapping between problem space and solution space [CE00]

This conclusion defined a new modeling trend: a shift from general purpose mod-
eling languages into the area of domain specific modeling, using domain specific mod-
eling languages.

2.2.3 Mapping between Domain and Solution Spaces

From the point of view of the software system developers the actual business environ-
ment together with the requirements to the software operating in this environment
can be referred as the problem space. Then, the development of a software system can
be considered as finding a proper mapping between the problem space (i.e. the appli-
cation domain and the software requirements) and the solution space (the developed
software) as shown in figure 2.2.

In the traditional software development process the mapping from the problem
domain to the software domain is usually done manually and is the central part of the
development effort. Often the domain model is not build at all, and exist only in form
of the requirements specifications, or even worse, in some form of half-couscous desires
of the customers. The process of mapping in this case is the process of building the
system design form the requirements specification (or oral customer’s explanations)
using some general purpose modeling language (in case of object oriented approach
usually UML).

This process is generally intuitive, error prone and individual for every developer.
General recommendations exist on how to solve this task, e.g. the design patterns
as a set of standard solutions for standard problems. In case of identical or similar
domains a good variant of this mapping is often also identical or the similar.

Similarly to the CASE tools for generating program code from UML models,
the corresponding tools for DSL’s were desired. The powerfulness of such tools (as
well as their complexity) would be higher comparing to the UML-tools because such
tools had to be able to perform the mapping from any domain to the corresponding
solution space. Using such tools by all the developers in a special domain, would
provide unified and optimized variants for such a problem/solution mappings. Such
tool could be successfully compared to a domain-oriented design-pattens cookbook
developed for a definite domain and stored not in a paper form but in a digital form
and containing not only the design decisions, but the source code of such decisions
too.

However despite the obvious usefulness of such tools their development requires
much effort. Because these tools are designed to perform mapping from any problem
to the corresponding solution space, their designers should develop the whole range
of prefabricated solutions (general solution space) and prescribe the rules of how to
decrease these solution space to only one solution, depending on the description of

2.3. SOFTWARE DECOMPOSITION PERSPECTIVE 21

the given problem. The design of the mapping rules between problem and solution
spaces can be done in a form of a general purpose modeling language (e.g. UML), or
in a form of a DSL, design specially for describing mappings.

Another problem exist, because every DSL describes only one special domain out
of many, therefore for every DSL a separate tool had to be developed.

Therefore, the software engineers proposed to build some generic tools, capable of
generating source code, based on a model expressed in a definite DSL and another
model, which models this definite DSL, which could be expressed using some standard
general purpose modeling language like UML.

2.3 Software Decomposition Perspective

As was discussed before, system evolution can increase system complexity. To decrease
complexity special counteractions have to be done (see section 1.1 and Lehman’s
second law [LB85]).

What is the general meaning of system complexity? It is a system featuring a
large number of interacting components. Therefore, the natural way to decrease
system structural complexity is:

• the decomposition to subsystems, so that the internal coupling inside subsystems
is higher, than external coupling between the subsystems;

• and the encapsulation of subsystem implementation and hiding it behind the
interfaces, which are the only instruments through which other subsystems can
use the functionality of the given subsystem.

Such subsystems are sometimes referred “structure points” [Pre00, McM95] or simply
as “modules” or “components” [Mey88]. Large number of software engineering ap-
proaches are devoted to the studies of approaches for software decomposition methods
which can decrease perceived complexity of the system and increase its understand-
ability.

While modeling is a temporary decrease of the system complexity for better human
understandability, decomposition really decreases the complexity of the end system.

2.3.1 Component Technologies

The history of software development knows a lot of attempts of system and source code
decomposition into functions, modules, files and later to classes and interfaces until the
notion of “component” was finally introduced. Comparing to modules components are
meant to be exchangeable. This means, that one component can be used in different
applications and one application can easily exchange its one component to another.

Therefore changes to the system can be introduced by complete exchange of a
component, instead of introducing new changes to an existing code. This approach
of introducing changes does not increase the system complexity.

The possibility to assemble an application from general purpose interchangeable
components is the main challenge of the generic programming, which in extreme case
could completely replace programming. The configuration of components could be
expressed in some configuration language. The practical use for this ideas can be seen
in construction of template libraries (e.g. in C++) or generics in Java, where instead
of using a new configuration language an extension to existing language was done.

22 CHAPTER 2. MDSD: PREDECESSORS. COMPLEXITY ISSUES

2.3.2 Frameworks

Framework is a prefabricated combination of software components, that can be reused
across many similar applications. This combination of components is usually already
structured in a form of a certain design decision. Therefore, framework is usually
defined as a reusable design decision. In this way frameworks resemble the design
patterns with the difference that the latter imply the reuse of the design solution only
and the former incorporate also the code reuse. Another difference is that frameworks
correspond to a larger grained design decisions on a higher abstraction level, i.e. they
are usually meant for a definite problem domain, or a family of applications and
the design patterns for a definite subproblem area inside such a domain. Therefore
frameworks often consist of combinations of deign patterns.

So generally speaking, a framework is all the program code prefabricated and
reused across similar applications. Lets analyze which code is usually reused in a
software system.

As shown earlier in figure 2.1 the designed system functionality depends on the
inputs from the system environment. The result of the work of the system influences
the system environment by its outputs. Therefore, every software system consist of
following subsystems:

• A subsystem or mechanism for processing input control signals or data to the
system from the system environment.

• A subsystem or mechanism for preparing output control signals or data to the
system environment.

• A subsystem or mechanism for modeling the system environment, which changes
its state and notifies the system by the input signals.

• A subsystem implementing system functionality or application logic.

Usually the subsystems for processing input and output signals are independent
of the exact application domain, but are strongly dependent on the used technology.
A lot of frameworks provide a substantial support of these tasks. The frameworks
which depend only on the technological solution, and make no assumptions about
the application domain structure, i.e. system environment, can be called domain
independent frameworks. On the other hand in every framework we can extract a
domain-independent part (see figure 2.3). This can be considered as the application
of the separation of concerns principle.

The system environment is very strongly dependent and usually needs a separate
manual design and implementation for each application or domain. Common software
and domain modeling techniques are usually used for that (see section 2.2).

The usage convenience of the frameworks is achieved due to the combination of
the following components:

• Abstract classes, proving for the extensibility of the frameworks by subclassing,
utilizing the fact that it is easier to subclass an abstract class then to create
a new one. This is a property of so called “white-box frameworks”, which are
easily extensible, but require a good knowledge of the framework design.

• Interfaces, behind which the implementation of routine functionality is hidden.
This mechanism is common for so called “black-box frameworks” and is usually
preferred for commercial framework products.

• Application logic control, programmable and partly configurable.

2.3. SOFTWARE DECOMPOSITION PERSPECTIVE 23

Component
Libraries

Component
Libraries

Component
Libraries Routine

Infrastructure
Libraries

Routine
Infrastructure

Libraries

Domain Independent/Technology Dependent Framework

Abstract
Classes

Domain Dependent
Framework
Adjustments

Application
Code

Controller

Configuration
File

Domain Dependent /
Technology Independent

Framework

Application Code
Domain and Application
Dependent / Technology

Independent

Figure 2.3: General Structure of a Framework

• Component library holding the components (also classes or functions) that could
be optionally used in an application.

• Extension points for plugins.

After the usefulness of frameworks was understood the development activity split
into two forms: framework development and application development. Often this
split occurred not only among the software development companies, but also inside a
company among development teams.

A framework provides a prefabricated solution design, a template, i.e. it exist in
solution space. The domain dependant components of frameworks provide prefabri-
cated implementations of domain entities, therefore cover some part of the domain
space and it’s mapping to the solution space. Still this support is almost never com-
plete. Therefore the problem of increasing software complexity during the system
evolution still exist, when using frameworks. The richer the domain specific part of a
framework is, the easier this problem can be solved.

2.3.3 Generative Programming

Some stand alone components (i.e those that are sold and shipped as independent
software products) or the components that are parts of frameworks that are meant to
be used in different domains have much in common. The difference can be extracted
in form of some configuration data. These are the configurable components. Such
components accept the configuration parameters and according to this parameters
dispatch the calls to the other framework components. In this way the application
logic can be partially programed.

The process of dispatching the program calls is not a very strait forward. A lot of
checks have to be done in the runtime. A more efficient way is to generate a version of
a component based on configuration parameters. In this way the expensive checks are

24 CHAPTER 2. MDSD: PREDECESSORS. COMPLEXITY ISSUES

done only once, by the generation of a component. This corresponds to the tunning
of a component to a special domain or a special application inside this domain. The
further operation of a component is based on this specially tuned (generated) version
of a component, avoiding unnecessary checks and computation complexity.

The components responsible for the generation of other components and capable
of processing some input data (parameters) to perform generation were named gen-
erators. This input data can be complex and structured, depending on the level of
flexibility of the output, the generator is supposed to produce. Often the structure of
the input data to the generator of domain-dependent components resembles the do-
main structure, i.e. the generators are build to process the domain models, described
using definite DSL’s.

By changing the input data to the generator the changes to the software system can
be introduced. This changes are not influencing the generator structure, therefore they
don’t influence the complexity of mapping from domain to solution space. Therefore,
the complexity of a system does not increase after the regeneration. In fact this
approach equals to the “generation” of a new software system, but with the changed
requirements.

2.4 Model-Driven Software Development

Model-Driven Software Development approach evolved as a combination of modeling
techniques and the generative programming. It evolved from a slightly older approach:
generative programming.

In the late 90 software engineers all over the world began to loose their way
in different existing methodologies. Traditionally they were supporting the Object-
Oriented approach, but steadily gathered different beyond-the-objects techniques:
Domain Modeling, Component Orientation, Aspect-Oriented and Intentional Pro-
gramming. Until, finally, in 1999 on the Firs International Symposium on Generative
and Component-Based Software Engineering (GCSE ’99) in Erfurt, Germany, the
generative programming was born, as a methodology for combination of all these
methods [CE00].

The generative programming offers a structure for a successful interplay of domain
models written using DSLs, which are inputs for the generators, capable of refining
and transforming them to actual generated software components, which in their turn
interact with some other generic components in a form of a framework, which due to
the generated components is specific for all applications in one application domain.

Although this process was initially defined withing the generative programming
approach, the term generative programming is usually understood in a much broader
sense. Often generative programming is considered to be any kind of software devel-
opment, where some parts of code are generated depending on some input. Generative
programming also does not obligatory prescribe the use of the whole combination of
DSLs, generic components and generators.

To avoid these misleading terminology very soon a Model-Driven Development
(MDD) or more precisely Model-Driven Software Development (MDSD) approach
evolved, which prescribe the domain models described in DSLs and code generation
as obligatory parts of the development process.

A well known and commonly used term Model Driven Architecture (MDA) is
a Object Management Group (OMG) effort towards achieving the standardization
in MDSD approach for interoperability of platforms, tools as well as the developed
applications. The restrictions set by OMG to achieve this goals often decrease the
flexibility of individual applications and increase the development effort. Therefore

2.4. MODEL-DRIVEN SOFTWARE DEVELOPMENT 25

MDA recommendations are commercially not very common and are not influencing
the ideas of the current Thesis.

2.4.1 Frameworks and Applications

An MDSD Framework is a special kind of framework that obligatory includes some
generic components (platform), a DSL for model definition, some kind of parser that
can read models, and generators that can generate other models or application code.

The work of application developers is the definition of a model, running the gen-
erator and addition some specific application logic to the generated code. In more
complex tasks the models have to be transformed, enriched with some details or
merged with other models before the actual program code can be generated. These
transformations are defined using special transformation languages and are then ex-
ecuted by the generators.

The simplification of the job of application developers shifts more tasks to the
framework developers, who are responsible for the definition of DSLs, developing
convenient editors for model creations, writing libraries containing important trans-
formations. Although this work is usually done by another team of the developers,
then the application development, still these tasks are usually quite domain specific
and are done within the same company as the application development.

There usually is a third group of developers who solve even more general domain
independent tasks as developing the generators, editors and tools for DSLs definitions.
These tasks are currently solved by proprietary and open source framework developers.

The scope of a current thesis refers to the third group of tasks as it is the devel-
opment of a tool capable to migrate models in case the DSL is changed.

2.4.2 Model-Driven Change Management

MDSD approach promised to have a good support for the iterative development and
change management. From the first glance the change management really looks sim-
ple.

The changes to the MDSD application can occur in two places:

• changes to the model, i.e. structural changes of the modeled objects. In this
cases the abstract model is changed and the application is regenerated; no com-
plexity increase occurs;

• changes to the application logic, i.e. those changes that are very application-
specific and are introduced not the generated infrastructure code, but to the
manually written code. Obviously in the MDSD application such code exist,
but usually it is only around 40% of code [SVC06], and such code is usually
“component specific”, hidden behind a good component interface, which is gen-
erated and model dependent. So even mistakes or bad manual component im-
plementation or change will influence only one component and will not increase
the system complexity.

However the problems would occur in case of changes not in the application itself,
but one level up, in case of changes in the framework. One such change can influence
a lot of applications that use this framework.

This is a general software engineering problem, or can be even extended to a gen-
eral engineering problem. What happens if the tools used for any kind of engineering
development are changed. Generally, a change to a more general engineering tool or
methodology causes the need for migration of all the depending specific activities.

26 CHAPTER 2. MDSD: PREDECESSORS. COMPLEXITY ISSUES

More specifically in the software development migration is usually needed when the
implementation of language compilers changes, the component libraries or frameworks
functionalities are modified.

Often as a solution for such problems the backward compatibility principle is used.
That is, the changes to the libraries are just added, and the earlier versions remain
as part of the library. The recommendations are done on the usability of introduced
methods, functions or components, still the corresponding earlier variants are not
completely forbidden, but just not recommended, often marked as “deprecated”.

Another work around could be the usage of very generic interfaces for calling the
library functions. The substantial changes to their implementation are not invalidat-
ing the client code of such libraries. The same is a common practice for building
frameworks, e.g. Eclipse.

Anyway these approaches are increasing the implementation complexity of such
libraries and frameworks, and are useful mostly for commercial widely used products
with large number of clients.

The domain-specific part of MDSD framework is used only within one domain.
Therefore have less users then domain independent part. The domain dependent part
is very much change sensitive, because should be able to fast react to the system
environment changes, i.e. domain changes. Therefore, the two approaches described
earlier are not very useful.

The main part of the domain specific part of MDSD framework is namely the DSL
(and the domain-specific solution code generated correspondingly to this DSL). If a
change of a DSL is done, the models which were written using the old version of a
DSL may become invalid with respect to the new version of the DSL. These type of
changes within MDSD architecture are the topic of this Master Thesis.

2.5 Motivation: Why SAP Goes for MDSD?

If whole chapter up to now can be treated as the motivation for MDSD approach,
this section explains why MDSD approach is important for the SAP AG, where my
Master Thesis was done.

SAP is the third world largest company in the world and the largest developer of
ERP systems worldwide. This means, that the purpose of the software developed at
SAP is to provide solutions for the complex support of various businesses. Naturally
any SAP software solution installed in an organization complies to the software system
notion introduced in section 2.3.2.

The SAP ERP system resembles the notion of framework, which can be composed
of different components, have a flexible mechanism to perform tunning of the system
for the specific needs of an organization and provide adjustments by adding client
specific code, usually written in ABAP proprietary language used for SAP systems.

Such customer specific solutions are build using SAP platform (usually SAP R3,
in the future NetWeaver), and add-on applications and application components. To
build this structure a deep analysis of the organization business environment and the
customer business processes have to be done.

Depending on the customers business area and the application or component which
needs to be adjusted or reprogramed (or even regenerated) the modeling was done
using a special domain oriented modeling language. Different teams working on dif-
ferent SAP components and with different customers being aware of usefulness of
domain modeling invented them as well as their tool support. In most cases, being
very powerful with respect to the intended use case, these tools showed deficiencies
concerning interoperability [AHK06].

2.6. SUMMARY 27

A common infrastructure, i.e. a framework, providing the common tools for defin-
ing DSL, storing and displaying the models developed using these DSLs was needed.
First this initiative started as a research project at SAP Research laboratories, and
later after the commercial usefulness of such tools was understood, in the middle of
2005, SAP launched “Modeling Infrastructure” (MOIN), a development project as
part of NetWeaver application platform. The official goal of the MOIN project is to
implement the platform for SAPs next generation of modeling tools.

Although the current work was done in the MOIN team, the platform for the
current proposal on how to manage DSL changes was done using Eclipse Modeling
Platform (EMF) [EMF], an open source MDSD platform from Eclipse community.
The reason, why EMF was preferred to MOIN, is that EMF is currently a released
framework, while MOIN is still in the development stage. Some other reasons will
be explained later. Still, due to the similarity of the tasks that are meant to be
solved by EMF and MOIN, the results of the practical work conducted using EMF
can be important for the future MOIN design decisions, as well as in any other MDSD
framework.

2.6 Summary

Software engineering as any applied science is a science about a trade off. The main
idea that goes through the whole chapter is that Software Engineering evolved as a
science about the methodologies for the simplification of the software development.
The traditional development processes appeared to be incapable to adjust to numerous
changes to the software systems requirements and to be efficient in case of fussy
and unclear initial conditions. Therefore the tools and methodologies evolved which
efficiently support the iterative development not breaking the software architecture
and without bringing additional complexity to the developed software.

A promising technology for major software enterprise applications projects is cur-
rently MDSD approach, which has convenient methods to support iterative develop-
ment due to the possibility for abstract domain modeling and refinement of the model
to the source code automatically using an application generator.

This approach talks about the methodology for the effective development of the
families of software corresponding to one domain. Unfortunately, it has a challeng-
ing problem not solved up to now: how to organize automatic migration of each
application, in case the generic components, supporting the common infrastructure
functionality, is changed.

The more specific problem is how to migrate application models in case the DSL
for the description of these models is changed. This problem is not solved up to now,
more about it in chapter 4.

28 CHAPTER 2. MDSD: PREDECESSORS. COMPLEXITY ISSUES

Chapter 3

Model-Driven Software
Development: Notions and
Concepts

3.1 Definition of Main Notions

After the introduction to the Model Driven Software Development is done and its
purposes are clearly understood the required notions and definitions used in MDSD
will be introduced.

The notions, their definitions and the terminology used in the current work are
is based on the book of Thomas Stahl and Markus Völter “Model-Driven Software
Development” [SVC06], if not otherwise specified.

3.1.1 Model-Driven Design

Firstly, the notions for domain analysis and description (used during the analysis and
design stages of the software development process) will be introduced. These concepts
and their relations are depicted in figure 3.1.

Domain : The starting point of MDSD is a domain, which is a bounded field of
interest or knowledge usually with its own special concepts and their terminology
(defined in section 2.2.2). The domain is extracted out of the real world as an
abstraction of some its part. The sign of a good abstraction is the easiness
to assign a name to the domain. After the separation of domain it can be
analyzed, the core concepts and their relationships can be extracted. This
process resembles the projection of a “piece of world” to the formalized IT
plane.

Model : Model is the formalized representation of a “piece of the real world” and
a definite state of the things in it. It represents one of the possible domain
states. A model is a “sentence” formulated in modeling language and obtains
its meaning from the language semantics.

Meta-Model (MM) : In the context of MDSD, it is absolutely mandatory to clarify
the structure of domain (i.e. its ontology), so that it is possible to formalize
this structure or its relevant parts. This formalization takes place in the form
of meta-model. The meta-model contain the description of the abstract syntax

29

30 CHAPTER 3. MDSD: NOTIONS AND CONCEPTS

Meta Meta
Model

Domain Abstract
Syntax

Semantics

Concrete
Syntax

Modeling
Language

DSL

Static
Semantics

Formal
Model

Meta
Model

<<instanceof>>

<<instanceof>>

specified
based on

gets meaning from

specified based on

respects

<<synonym>>

Subdomain

Describes
relevant
concepts of

Figure 3.1: Concept formation: modeling and DSLs [SVC06]

and the static semantics of a modeling language (i.e. DSL). A meta-model
describes concepts that can be used for describing the state of a domain by
creating models.

Meta-Meta-Model : A meta-model must itself have a meta-model that defines the
concepts available for meta-modeling. This is the role of the meta-meta-model.
meta-meta-models are important in two respects: for people defining meta-
models, it defines the language that is used for doing so. For framework devel-
opers, the meta-meta-model is the basis for integration among meta-models, i.e.
the basis for integrating domain specific framework into the domain independent
frameworks.

Abstract Syntax : represents the abstract concepts of the formalized domain and
their relationships, irrespectively of their actual form of visual representation.
Several concrete syntaxes can correspond to one abstract syntax.

Concrete Syntax : specifies the concrete notation (textual or graphical). Several
concrete syntaxes can correspond to one abstract syntax.

Static Semantics : The static semantics of a language determine its criteria for
well-formedness, i.e. precsribes the rules for the combination of meta-model
elements. Violation of these rules invalidates a model. In the current work by
using the word “semantics” the static semantics is meant.

Dynamic Semantics : Although the semantics of a DSL cannot be formalized it
has to be commonly and clearly understood to all people working with this
DSL. If the DSL’s semantics strictly corresponds to the actual domain, it can
be intuitively clear for domain specialists. On the other hand it should be
uniformly understood by the developers that develop the software solutions in
the given domain. Often the extensive documentation is needed for that.

3.1. DEFINITION OF MAIN NOTIONS 31

Domain-Specific Language (DSL) : consists of the part that can be formalized,
which is the the static semantics and the concrete syntax, and the part, which
cannot be formalized, that is the dynamic semantics of the DSL. The notion of
semantics is similar to the corresponding notion in the field of linguistics. The
semantics of language elements implies their actual meaning. In case of DSL, the
semantics of every element in meta-model is its equivalent in the corresponding
domain. The semantics of a combination of meta-model elements consequently
corresponds to the meaning (i.e. existence, conditions, impacts, value) of the
combination of corresponding domain concepts.

Consequently, when using the MDSD approach during the analysis and design
phase the main deliverables are:

• DSL’s meta-model, containing the information about it’s syntax;

• textual documentation explaining the DSL’s dynamic semantics;

• model capturing state of the domain’s instances.

3.1.2 Model-Driven Development

As was already discussed in section 2.2.3, the software development process resembles
the process of mapping from problem to solution spaces.

The MDSD approach as defined in [SVC06] prescribes the following terminology
for these constituents:

Platform : Corresponds to the domain-independent part of a framework, but is
relative to the notion of domain, i.e. depending on which domain is chosen, the
domain-independent framework is all the infrastructure, which is lower level,
then the implementation of the domain-specific concepts.

A platform can consist of building blocks, which correspond to the component
and infrastructure libraries as defined in 2.3.2, other frameworks, middleware,
plug-ins or aspects in terms of Aspect-Oriented Programming (AOP).

The application code, when using MDSD approach, can be separated into:

Generated Artifact : is the part of the application code that can be generated
from from the model according to the DSL’s semantics and has its software
“module” structure that resembles the domain structure.

Non-generated Artifact : is the manually written part of the application code,
which implements application specific logic, that cannot be expressed using DSL;
depending on the expressiveness of the defined DSL it can be quite different in
it’s size.

The mapping from problem to solution in MDSD is done using two mechanisms:
the transformations from models to generated artifacts and manual implementation
of the software requirements to the non-generated artifacts.

Transformations are the rules of mapping the syntactical elements of the given
meta-model to the software solution artifacts or to the syntactical elements of
another meta-model. Therefore two types of transformations are distinguished:
model-to-platform (model-to-code) transformation and model-to-model transfor-
mations. To be able to define the transformations the special languages are
used, they could be considered as the DSL’s for writing transformations.

32 CHAPTER 3. MDSD: NOTIONS AND CONCEPTS

Platform

<<role>>
Product

Non-generated
Artifact

Generated
Artifact

Platform
Idioms

Model-to-Platform
Transformation

<<abstract>>
Transformation

Formal
Model

Metamodel

Model-to-Model
Transformation

0..*

0..*

0..*

0..*
Target

Source
Metamodel

<<instanceof>>

Target

Source

Target Metamodel

Figure 3.2: Concept formation: transformations [SVC06]

A model-to-model transformation creates another model. However, this model is
typically based on a different meta-model than the source model. Such transforma-
tions generally describe how the constructs of teh source meta-model are mapped to
the constructs of the target meta-model.

A model-to-platform transformation produces generated artifacts, that are based
on the platform. For this class of transformation a target meta-model is not needed.

Product : the target working application, which consists of the generated and non-
generated artifacts and the platform, which serves as a framework for them.

The relation of all the described concepts is shown in figure 3.2

3.2 Meta-Modeling Explained

Now that the general approach for MDSD is clear, the questions arises: what are
the general modeling principles for building DSLs and models and how and why the
existing meta-meta-models are capable of having enough expressiveness to be able to
define “any” DSL?

3.2.1 Levels of Meta-Modeling

According to the definitions given in the previous section, in the MDSD approach,
three levels of modeling can be distinguished:

• M1 - model level;

• M2 - meta-model level;

• M3 - meta-meta-model level.

As shown in figure 3.3 each model is described by its meta-model, each meta-model
in its turn is described by its meta-meta-model. I.e. each meta-model is an instance
of some meta-meta-model, and each model is an instance of some meta-model.

3.2. META-MODELING EXPLAINED 33

Meta Meta Model 1

Metamodel 1 Metamodel 2 Metamodel M

Model 1N
Model 12

Model 2N
Model 22

Model21

Model MN
Model M2

ModelM1Model11

M3: Meta Meta
Models

M2: Metamodels

(one per domain)

M1: Models

(one per application
in a domain)

Meta Meta Model 2
de

sc
rib

es
in

st
an

ce
 o

f

de
sc

rib
es

in
st

an
ce

 o
f

de
sc

rib
es

in
st

an
ce

 o
f

de
sc

rib
es

in
st

an
ce

 o
f

de
sc

rib
es

in
st

an
ce

 o
f

de
sc

rib
es

in
st

an
ce

 o
f

de
sc

rib
es

in
st

an
ce

 o
f

de
sc

rib
es

in
st

an
ce

 o
f

de
sc

rib
es

in
st

an
ce

 o
f

describes

instance of

de
sc

rib
es

in
st

an
ce

 o
f describes

instance of

Figure 3.3: Levels of meta modeling

Each meta-model corresponds to one domain and describes models which corre-
spond to applications in this domain. There could be more than one application in
one domain. This means, that meta-model is in the one-to-many relationship with
the models it defines.

In the same way the meta-meta-model is in the one-to-many relationship with all
the meta-models it defines.

3.2.2 Modeling as Formal Real World Description

From the philosophical point of view everything in the real world, that a person can
think or speak of, is an object (entity, or concept) [Lay06]. The real world entities are
described through their properties (attributes), behavior (which also can be considered
as the behavioral property) and relations to other entities [Swo00]. These philosophical
knowledge about the nature of the real world concepts is used in the computer science
for the formalization of the real world concepts. The first step on this way was the
invention and popularization of the object-oriented programming languages.

The 40-year old history of using object-oriented programing languages proved its
convenience for the development of large scale information systems, that have to re-
semble and support real life human activities. And if at the beginning of the object
oriented development the developers were still afraid of using pure object-oriented
programming languages like Smalltalk and Java and to be on the safe side preferred
the hybrid C++, which supported also structural function oriented approach, nowa-
days the experience in object-orientation showed that objects, properties and methods
provide sufficient expressiveness for most development task.

Currently a broad area of computer science called “ontology” is working on the
methodology for the further formalization of the real world concepts and the instru-
ments for this formalization. If the philosophy studies the real world nature as it is,
ontology in computer science is trying to formalize this knowledge. It introduces the
notions of:

Individuals - the basic or “ground level” objects;

Classes - collections, or types of objects;

34 CHAPTER 3. MDSD: NOTIONS AND CONCEPTS

Attributes - properties, features, characteristics, or parameters that objects can
have and share;

Relationships - ways that objects can be related to one another.

Therefore the information about the real world structure and activities can be
conceptualized according to its “functional nature”, i.e. the central things we are
thinking and speaking of are objects, additional information about the objects, which
determine their essence, is reflected through attributes or relationships, if this infor-
mation associate and relate the objects to other objects. The behavior of objects
can be defined as change of the state of objects, the state of object is also described
through its attributes.

3.2.3 Relation between models and the meta-meta-model

In the everyday life people give names to different objects: “a pen”, “e-mail”, “equa-
tion”, “process”, these words are nouns. Human brain knows, that all of them are
objects and that they are different objects, because they look and feel differently,
i.e. have different properties: “small”, “electronic”, “mathematical”, “changing in
time”, these words in their turn express different type of information then objects,
these words are adjectives. Nouns and adjectives are different parts of speech; there
is limited number of them in each natural human language, usually five.

Similar is true not only for natural languages, but also for the DSLs. Whenever the
new DSLs are defined they described new special kinds of objects (concepts) by giving
them special names, as well as define a set of attributes, describing objects properties,
establish the relationships to other objects and, probably, define the operations per-
forming some object specific behavioral activities. Every new DSL’s element, which
describes objects, actually is an object, i.e. is of type object. Every DSL’s element
describing properties of objects is an attribute in its sense, i.e. is of type attribute.
Similar is true for relationships and operations.

The purpose of the DSL is to hold the information about the concepts used for
modeling. It resembles the notion of dictionary for natural human languages. Every
word in this dictionary is a noun, adjective, or other part of speech, i.e. it is an
instance of some part of speech.

A sentence written in the natural language can be compared with a model. The
dictionary of the language in which the sentence is written then corresponds to the
DSL. Every word in the written sentence is an instance of the word from the dictionary
(has it’s syntax and semantics, i.e. meaning). Still every word in this sentence is a
definite part of speech, is an instance of noun, or pronoun etc. Similarly any model
is an instance of its meta-model (is defined by its meta-model) and also conforms to
the corresponding meta-meta-model.

As was said before every modeled object in a model is an instance of its corre-
sponding meta-model concept, and in the most general sense is an instance of objec-
t/concept/entity in the corresponding meta-meta-model. Similar for the attributes,
relationships, operations.

3.2.4 Ecore Meta-Meta-Model Structure

As was discussed before, the meta-meta-model, the purpose of which is to have enough
syntactical expressiveness to define new DSL’s has to have concepts (types) to define
new: objects, attributes, relationships and operations.

There exist several frameworks supporting the MDSD approach, and each has its
own meta-meta-model. Although these meta-models are slightly different, they have

3.2. META-MODELING EXPLAINED 35

EModelElement

ENamedElement

EStructuralFeature

ETypedlElement

EClassifier

EClass
-containment
EReferenceEAttribute EPackage

EOperationEParameter

type

Figure 3.4: Ecore Meta-Meta-Model

similar core structure. Here, as an example the Ecore meta-meta-model is shown,
which is used in the Eclipse Modeling Framework (EMF) [EMF]. Simplified the
Ecore meta-meta-model is shown in figure 3.4. In more detail it is shown in appendix
B.

As shown in figure 3.4 every information element of the developed DSL has to
instantiate a subclass of EModelElement abstract class. Most modeled DSL elements
have names, there fore such elements instantiate a subclass of the abstract class
ENamedElement.

The concepts modeled with the DSL (“nouns”) are modeled as elements of type
EClass, they can have attributes and references, which describe additional informa-
tion about the modeled concepts and are instantiating one of the two corresponding
subclasses of the abstract class EStructuralFeature: Attributes are instances of
class EAttribute; the relationships between concepts are described through refer-
ences to other objects, which are instantiating the class EReference. The behavioral
information about the concepts of modeling is reflected through operations of type
EOperation and can accept parameters of type EParameter. The concepts can be
grouped in packages, which instantiate the class EPackage.

The classes of type EClass define new types (concepts). Other elements like
attributes and parameters should themselves be of some type, i.e. have it’s type
characteristic (e.g. string, integer etc.). But this type is not, the real type which
they instantiate (because they instantiate EAttribute or EParameter correspond-
ingly), therefore the type information is recorded as an attribute of the abstract class
ETypedElement. In the similar way the information about the returned type by an
operation, or the type of the instance to which a reference points is recorded.

The additional information about each of these Ecore model elements (i.e. sub-
classes of EModelElement like classes, attributes, references, operations) is described
through the attributes of the corresponding model elements, relationships and opera-
tions. E.g. if a reference to an object implies the aggregation link to this object, then
the attribute containment of the corresponding reference is set to true.

It is important that the Ecore meta-meta-model is an instance of itself. I.e. every
Ecore model element is an instance of EClass; every attribute of Ecore model element
is an instance of EAttribute, etc. This means that Ecore meta-meta-model can
be considered as a meta-model, the meta-meta-model of which is Ecore meta-meta-
model, i.e. it can be seen as one of the meta-models defined using Ecore meta-meta-

36 CHAPTER 3. MDSD: NOTIONS AND CONCEPTS

model. This provides the possibility to use the same editors, transformations and
other tools for Ecore meta-meta-model as for all other meta-models, which is used
actively by the EMF tool builders.

Similar is true one metalevel down on the level of models and meta-models. Every
meta-model can be considered as a model, the meta-model of which is Ecore. This fact
is also used by the tool buiders, and provides the possibility to use the same editors
for models (instances of any random meta-model) and meta-models (instances of a
definite Ecore meta-model). This fact will play an important role in the current work,
for the attaching of the EMF change tracer to meta-models. This will be discussed
later in section 5.

3.3 MDSD Tool Support

The described MDSD approach prescribes no assumptions about the technologies
that have to implement it. Therefore any technology that implements the described
concepts can be considered as the technological solution for MDSD.

The software engineering research and industrial teams during the the past two
decades have built numerous frameworks, that aim at implementing MDSD approach
or at least some it’s parts. Often they are called meta-programming environments, or
generative programming environments. The examples of such frameworks developed
in the USA are MetaEdit+ [MEd], GME2000 [GME, SLKN01] etc. The modern aca-
demical and industrial research effort in the European MDSD community is concen-
trating around Eclipse Modeling Framework [EMF]. Own separate meta-meta-models
are the basis for each of such frameworks.

Eclipse Modeling Framework (EMF) is an Eclipse-based modeling framework and
code generation facility for building tools and other applications based on a structured
data model [FB03]. The growing popularity of EMF provides for its fast development
as an emerging de-facto industry standard onto which many interesting MDSD tools
are built [SVC06]. The core of the EMF framework is the eCore meta-meta-model.

The only currently existing standards in the MDSD field originate from the work
of the OMG standardization consortium [OMG], which developed the standards for
the MDA approach. Among these standards OMG issued the specification for a meta-
meta-model called The Meta Object Facility (MOF) [MOF06]. The MOF meta-meta-
model is more extended then Ecore meta-meta-model and provide for more expres-
sivness of the meta-modeling. Although several implementations of the MOF meta-
meta-model exist, they only implement a relevant practical subset of the MOF. The
model repository built within SAP company in MOIN project, discussed in section
2.5, also uses MOF as the meta-meta-model.

Chapter 4

Metamodel Evolution
Problem Analysis

4.1 Problem Description

As was mentioned in section 2.4.2 if a change of a DSL is done, the models written
using the old version of a DSL may become invalid with respect to the new version
of the DSL. In the context of MDSD this means that changes to a meta-model may
invalidate the models which are the instances of this meta-model. This problem is
the focus the the current work.

Below we illustrate this problem with an example.

4.1.1 Example: Meta-Model Changes

As an example let’s define some domain. It can be any area of interest, e.g. business
(some enterprise performing some business activity). The domain of interest can be
analyzed from the structural or process aspect, i.e. the structure of the company, the
structure of the company’s environment (customers, suppliers, partners), or its busi-
ness activities, business processes. Let’s assume that we analyze business processes in
a company. This is a common domain of interest. A large number of different software
consulting companies (including SAP) have to analyze the business processes of their
customers and build the corresponding software systems, supporting these processes.

In figure 4.1 an Expense Reimbursement Business Process is depicted using Busi-
ness Process Modeling Notation (BPMN) (see [BPM06]).

The BPMN is a standardized graphical notation for drawing business processes in a
workflow. BPMN was developed by Business Process Management Initiative (BPMI),
and is now being maintained by the Object Management Group. The primary goal
of BPMN is to provide a standard notation that is readily understandable by all
business stakeholders, i.e. the business analysts who create and refine the processes,
the technical developers responsible for implementing the processes, and the business
managers who monitor and manage the processes.

The example business process depicted in figure 4.1 was taken from [Whi06]. The
process is a sample expense reimbursement process. This process provides for reim-
bursement of expenses incurred by employees for the company. For example buying a
technical book, office supplies or software. In a normal day there are several hundreds
of instances of this process created.

37

38 CHAPTER 4. METAMODEL EVOLUTION PROBLEM ANALYSIS

Create
Expense
Account

Review for
Pre-

Approval

Approval
Review by
Supervisor

Auto-Approve
Expense
Account

Transfer Money
to Employee’s

Bank

Notify
Employee of

Rejection

Receive
Expense
Report

Account
Exists?

Pre-
Approved?

No

Amount <

$200

Otherwise Approved?
Approved

Rejected

Inform
Employee

Yes

- Event - Gateway- Activity - Sequence Flow

Figure 4.1: Expense Reimbursement Process

NamedElement

name

Node

Activity

Event

Gateway
SequenceFlow

BProcess
elements

0..*

inputs

0..*outputs0..*

start
0..1

end

0..1

Figure 4.2: BPMN Meta-Model Subset

After the Expense Report is received, a new account must be created if the em-
ployee does not already have one. The report is then reviewed for automatic approval:

• Amounts under $200 are automatically approved;

• Amounts equal to or over $200 require approval of the supervisor.

In case of rejection, the employee must receive a rejection notice by email. The
reimbursement goes to the employees direct deposit bank account.

In case a DSL for description of processes similar to the described one a meta-
model is constructed, which provides elements for capturing and representing the
needed aspects. The BPMN diagram from figure 4.1 then can be considered as a
model, which is an instance of the meta-model shown in figure 4.2.

This meta-model defines the abstract syntax for the BPMN elements used in the
BPMN example diagram from figure 4.1. These are not all the elements defined in
BPMN, but a small subset of them. Anyway other business processes besides the
depicted one, which can be described only this BPMN subset of elements, can be
defined as models instantiating this meta-model.

Non-Breaking Change

But whenever the modeling of other business process elements are needed, besides the
ones predefined in the meta-model depicted in figure 3.3, the extension of this meta-

4.1. PROBLEM DESCRIPTION 39

Review for
Pre-

Approval

Approval
Review by
Supervisor

Auto-Approve
Expense
Account

Transfer Money
to Employee’s

Bank

Notify
Employee of

Rejection

Receive
Expense
Report

Account
Exists?

Pre-
Approved?

Inform
Employee

No

Yes

Amount <

$200

Otherwise Approved?
Approved

Rejected

- Event - Gateway- Task - Sequence Flow

Review for
Pre-

Approval

Send e-mail
cancellation notice

to submitter
7 Days 23 Days

Create
Expense
Account

Figure 4.3: Expense Reimbursement Process: Timeout Constraints Added

NamedElement

name

Node

Activity

Event

Gateway
SequenceFlow

BProcess

Timer
startPoint

elements

0..*

inputs

0..*outputs0..*

start
0..1

end

0..1

Figure 4.4: BPMN Meta-Model Subset: Addition of Timers

model is needed, e.g. if we want to model the timeout constraints for the expense
reimbursement process.

Consider the following timeout requirement for this business process:

• if no action has happened in 7 days, then the employee must receive an approval
in progress email;

• if the request is not finished within 30 days, then the process is stopped and the
employee receives an email cancellation notice and must re-submit the expense
report.

Using BPMN these constraints can be expressed as shown in figure 4.3.
To be able to describe some events that happen at definite points of time BPMN

prescribe special kind of events, timer event. In context of MDSD, to model such
timer events in model we have to add the description (the metaclass) of timers into
the corresponding meta-model, as it is done in figure 4.4. Because a timer event is a
kind of event, it is added to the meta-model as a subclass of the event metataclass.

Now lets consider which consequences has this addition of the timer meta-class to
the meta-model, which describes different business processes.

40 CHAPTER 4. METAMODEL EVOLUTION PROBLEM ANALYSIS

NamedElement

name

Node

Activity

Event

Gateway
SequenceFlow

BProcess

Timer
startPoint

Task

Subprocess

elements

0..*

inputs

0..*outputs0..*

start
0..1

end

0..1

subprocess

1..1

Figure 4.5: Expense Reimbursement Process: Illustrating a Subprocess

Introducing a new subclass to the event meta-class adds new element to the meta-
model. This new element gives additional modeling possibilities, i.e. increases the
“degree of freedom” in the process of building models. By introducing the new sub-
class we have not deleted any existing information and haven’t changed any existing
meta elements. Therefore such change will not invalidate the existing model. The
introduced change is additive (non-breaking) or “backward compatible”.

If we have several models which were instances of the initial BPMN meta-model
shown in figure 4.2, then all these models conform to the old meta-model and con-
sequently do not model any timer events. Therefore the additive change of this old
meta-model to the new meta-model shown in firgure 4.4 will not invalidate any mod-
els. No migration of model instances is needed, because they remain valid with respect
to the new meta-model.

Breaking Change

Another kind of meta-model evolution scenarios is also possible. In case the activity
called “Create Expense Account” has to be described in more detail. The creation of
expense account may represent a definite subprocess of the expense reimbursement
process. To illustrate subprocesses the BPMN uses a special kind of activity. Namely,
BPMN prescribes to different kinds of activities: tasks and subprocesses. Tasks are
atomic activities or actions, used when the work in the process is not broken down to
a finer level of process model detail. On the other hand, subprocesses are non-atomic
compound activities, that can be broken down into a finer level of detail and enable
hierarchical process development. Every activity in a BPMN diagram has to be of
either task or subprocess.

To reflect this BPMN recommendation in out meta-model we have to introduce
two subclasses of the class Activity: Task and Subprocess and to define the class
Activity as abstract to reflect that it cannot be instantiated and that every activity
has to be one of its subclasses. This meta-model modification is shown in figure
4.5. Instances of such meta-model have means to distinguish between atomic and
non-atomic activities. In the figure 4.6 an instance of this meta-model is shown.

Now let us analyze the changes that we introduced to our meta-model. Basically,
we made three changes:

1. introduced subclass Task;

2. introduced subclass Subprocess;

4.2. CHANGES CLASSIFICATION 41

Review for
Pre-

Approval

Approval
Review by
Supervisor

Auto-Approve
Expense
Account

Transfer Money to
Employee’s Bank

Notify
Employee of

Rejection

Receive
Expense
Report

Account
Exists?

Pre-
Approved?

Inform
Employee

No

Yes

Amount <

$200

Otherwise Approved?
Approved

Rejected

- Event - Gateway- Task - Sequence Flow

Review for
Pre-

Approval

Send e-mail
cancellation notice

to submitter
7 Days 23 Days

Create
Expense
Account

- Sub process

Figure 4.6: BPMN Meta-Model Subset: Addition of Tasks and Subprocesses

3. modified class Activity to become abstract.

Introducing of two new subclasses is similar to the change described before (ex-
ample with timer addition). Consequently these changes are also additive and non-
breaking.

Another case is the third change. Making the class Activity abstract we decreased
the “degree of freedom” in the process of model creation. Now the instantiation of
class Activity is forbidden. Therefore all the models that contain instances of meta-
class Activity become invalid, because they do not conform to the new meta-model,
e.g. model shown in firgure 4.1 does not conform to the meta-model from figure 4.5.

Such changes can be referred as breaking. Special efforts have to be undertaken,
to continue working with the invalidated models. More about these efforts further in
this chapter.

Motivation for the Current Example

The BPMN was chosen for the given example due to its importance in every day
software design processes in many software development companies and because its
semantics is commonly understood. Another important issue is the absence of a
common (standard) working meta-model for this notation.

Although the standardization document exists (see [BPD]), which prescribes the
requirements for such a meta-model, no real working meta-model is build up to now.
Different software companies understand the importance of tools for business process
modeling and have built or are still building them, e.g. SAP has several ones. Still
they do not share any common meta-model or have no meta-model at all. Therefore
the ability to build models under the condition of absence of stable, commonly ac-
cepted and standardized meta-model is of high importance and the instruments for
meta-model change management and BPMN model migration are of great importance
in this domain.

4.2 Changes Classification

As was shown in previous examples changes of a meta-model may invalidate the
corresponding models. By analyzing the meta-models, and their changes, it is possible
to foresee the probable impact the meta-model changes may have on to some of the

42 CHAPTER 4. METAMODEL EVOLUTION PROBLEM ANALYSIS

All M2 Changes

Additive
(Not Breaking) Breaking

MM Resolvable MM Not Resolvable

Adds additional
information to
the metamodel

additions

Invalidate
some M1
instances

Migration can
be performed
automatically:
e.g renames

Migration can’t
be performed
automatically

Figure 4.7: Kinds of meta-model Changes According to the Impact on the Corre-
sponding models

corresponding modeles. According to the kind of this impact, we can distinguish the
following classes of changes:

Additive (Not Breaking) : These are all kinds of changes that increase model-
ing “degree of freedom”, e.g. all kinds of meta-class additions, additions of
attributes to classes (if they are not required attributes), etc.

Breaking : These changes decrease the “degree of freedom” for modeling some el-
ements, they set additional constraints to the models in the modeling domain,
or change the existing meta-model entities.
All the breaking changes can be devided in two classes:

Resolvable : Those changes, the impact of which to the existing models can
be automatically resolved, i.e. some automatic actions can be executed to
modify the models correspondingly to the change of their meta-model, so
that it become again valid with respect to the new meta-model version.

Not Resolvable : Those changes the impact of which to the existing models
might not be automatically resolved, i.e. some manual actions are needed
to modify the models correspondingly to the change of their meta-model,
so that it become again valid with respect to the new meta-model version.
In case of such meta-model change the manual user effort is needed.

In the figure 4.7 the discussed classification is shown.
The analysis of the meta-models and their changes helps to decide which impact

a change may potentially have to the models. Anyway, even breaking changes may
not break the existing models. For example, if there are no existing models, then, the
meta-model may be changed freely, and no additional effort is needed to adjust the
models to the new meta-model.

Often a breaking change invalidates some model instances, but some of them
remain valid, because they don’t instantiate the changed part of the meta-model, or
if the element values of the models fit into the new restricted value range, in case
degree of modeling freedom is decreased after change.

Therefore, after the meta-model change analysis is done, the analysis of the model
instances has to be performed, to detect the impact the meta-model change has to
each separate model. As a result of this analysis the invalidated model instances
can be detected. For the invalidated instances either automatic or manual counter
actions have to be done, depending on the kind of meta-model change: resolvable or
non-resolvable.

4.3. PROPOSED GENERAL WORKFLOW FOR MODEL MIGRATION 43

Classification

V1

Δ
V1/V2

M2

C
la

ss
if

ic
at

io
n

Change Detection or Trancing

Not Breaking

Breaking &
Resolvable

Breaking &
Not Resolvable

Change
Detection

M
ig

ra
ti

on

V
1

 I
n

st
an

ce
s

M
1

In
pu

t
G

at
h

er
in

g

M
ig

ra
ti

on
 A

lg
or

it
h

m
s

D
et

er
m

in
at

io
n

En
ri

ch
ed

in

st
an

ce
s

Algorithms DeterminationMigration User
Actions

Instance
Analysis

M2

V
1

 I
n

st
an

ce
s

M
1

M
1

Figure 4.8: Model Migration Process Model

4.3 Proposed General Workflow for Model Migra-
tion

The general approach for model migration in case of meta-model change can be split
into the following stages:

1. the determination of the differences between the two meta-models;

2. the classification of the changes as described in section 4.2;

3. instance analysis: determination of the invalidated instances;

4. user input gathering: the user input required for non-automatically resolvable
changes;

5. algorithms determination: the algorithms required for the migration are deter-
mined;

6. the migration is executed.

The workflow diagram of the proposed approach is shown in figure.
The first two stages are the focus of the current work. In the next section the ap-

proaches for change determination are discussed. The approach for their classification
will be shown in chapter 6.

4.4 Change Detection Approaches

To be able to determine, what kind of meta-model change has happened (for the fur-
ther analysis of its impact to the corresponding models), we have to have instruments
to extract the parts of the meta-model that have been changed (i.e. to be able to
separate changed and unchanged parts) and to determine what kind of modifications
have happened with these parts, e.g. if they were added, deleted, or modified.

44 CHAPTER 4. METAMODEL EVOLUTION PROBLEM ANALYSIS

V1
M2

V2
M2

Δ
V1/V2

M2

Direct
ComparisonM

atch
in

g an
d

ch
an

ge detection

V1
M2

V2
M2

Trace
ΔV1/V2

M2

Tracing

+

Figure 4.9: Change Detection: Direct Comparison

4.4.1 Direct Comparison

The direct comparison approach, in [Gir06] called offline difference detection approach
(see figure 4.9) is the comparison when two models are compared as independent data
structures and no connection between two models a priori exists.

To compare such too models they should be matched, i.e. the identical or simi-
lar parts have to be found, then the algorithms are executed, which determine the
associations between different parts of two models, and further the nature of these
differences is determined.

This approach has obvious advantage that two models can be compared whenever
the need for that exist. No specific actions are required during the creation of models
and their modifications. The only constraint is, that the models should be stored in
the same data format, but the can be created and modified with different frameworks
and tools.

However the disadvantage of this approach is the computation complexity of the
matching/diffing algorithms, their heuristics, that cannot guarantee the detections
correct and relevant differences. In case, when the models do not obligatory possess
unique identifiers of their elements, the change consisting in the move of some element
cannot be unambiguously detected, and may be confused with the action of deletion
with the successive addition of a similar element.

The research relevant to this approach is mentions in section 4.5.3.

4.4.2 Change Tracing

The creation of change traces (see figure 4.10) requires the modification of the tools
used for model creation. A special tracer tool is attached to the model instance and is
capable of tracking and collecting information not only about the model modifications
but also get the information from the framework, used for model editing. Therefore
the tracing approach is more powerful from the point of view of the amount of the
information it has at its disposal.

This approach is also called online change detection approach (see [Gir06]).
The evident disadvantage of the tracing approach is that only those models can be

compared to which the tracer was attached during the modification process. Therefore
the tracer tools are desired to be an important part of model editors.

Anyway, this is a minor difficulty, comparing to the advantage that the tracing
approach can bring due to the information richness it can collect. Therefore, this
approach is the focus of interest in the current work.

4.5. RELATED WORK 45

V1
M2

V2
M2

Δ
V1/V2

M2

Direct
ComparisonM

atch
in

g an
d

ch
an

ge detection

V1
M2

V2
M2

Trace
ΔV1/V2

M2

Tracing

+

Figure 4.10: Model Migration Process Model

4.5 Related Work

Unfortunately not much research was done up to now in the area of meta-model
evolution and the migration of the corresponding models. The current work is based
on the approach proposed by Boris Gruschko and is in general described in [BGGK07,
Gru07, BG07]. Beside this work the relevant research was done in the some adjacent
areas described further.

4.5.1 Domain Evolution. Description of Domain Model Mi-
gration

Some effort on the definition of DSL evolution and the migration of the correspond-
ing domain models to follow the DSL changes was done by Jonathan Mark Sprinkle
[Spr03, SK04]. In his works Mark Sprinkle refers to DSL changes as a part of the
natural process of domain evolution. He distinguishes between two types of domain
changes evolutionary changes, which are “small” modifications of some domain parts;
and revolutionary changes, “where the paradigm ontologies have few (if any) key con-
cepts in common, and the two syntaxes are more often unrelated than similar”[Spr03].
Here Mark Sprinkle discusses possible patterns of evolutionary changes, i.e. investi-
gates the evolutionary changes that happen with a meta-model during the domain
evolution process. In [SK04] Sprinkle defines a domain-specific visual language for
domain model evolution, that is a DSL friendly to the concepts of domain model
evolution and which provides the user with the ability to create mappings from pieces
of the existing meta-model to the evolved meta-model, by assigning the evolutionary
pattern to the meta-model elements. Thish language resembles the modern transfor-
mation languages for defining the mapping rules of the transformed models, but is
more specific, because the domain of its applications is not all possible transforma-
tions, but special patterns of evolutionary changes.

The language developed by Sprinkle and integrated into the GME2000 [GME]
framework, provides the possibility for the automatic migration of the domain models
once the mapping between the two DSL’s is defined. The problem of this approach
is that the mapping has to be defined manual by the user, even though a convenient
language is provided for that; no automatic domain change detection is possible.

4.5.2 Change Classification and Representation

In [AC07] a an approach for model difference (not meta-model!) classification and rep-
resentation is described, which makes use of EMF framework, Atlas Transformation
Language (ATL) [ATL]. In this approach the differences among models conforming

46 CHAPTER 4. METAMODEL EVOLUTION PROBLEM ANALYSIS

to an arbitrary meta-model can be therefore given as a model which adheres to a dif-
ference meta-model obtained by an automated transformation of initial meta-model
to difference meta-model. This approach assumes that the difference models are given
as firstclass artifacts.

4.5.3 Automatic Difference Detection

A bottle neck of the domain evolution and model migration problem is the develop-
ment of the suitable algorithm for change detection. There exist a lot of algorithms
for comparing general data structures. A overview of such algorithms is given in
[TBWK07]. In this work also one generic algorithm is proposed, based on using
a high-dimensional search tree for efficiently finding similar model elements in any
models irrespectively of the actual format and semantics.

However these generic algorithms are usually week in classifying the changes if
they don’t do any assumptions about the semantics of the compared data structures,
therefore the algorithms adjusted to the specifics of the compared data structures, may
be more efficient and are the objects of research, e.g. relational or object databases,
XML data, UML models etc.

Up to now no substantial work was done in the direction of the automatic difference
detection in meta-models. However, this problem is closely related to the difference
detection in UML models. An example of an algorithm suitable for UML models
comparison is UMLDiffcld proposed by Gerschick in [Gir06]. A more general approach
to the difference creation between two models is given by Alanen and Porres in [AP03],
where the mathematical definition of such operations as: difference detection between
two models, merging a model with the difference of two models and calculation of the
union of two models is given. The approach for conflicts detection of union operation
is shown and the way for their automatic or manual resolution. The corresponding
algorithms for MOF-based version control system are also provided in this work.

The difference between two models can be detected either by tracing persistent
unique identifiers or by matching the similarity, with the further difference calculation
(see [TBWK07]).

Model Matching

Matching is the process of detecting identical or similar parts of the compared models.
The EMF based tool capable of matching models or meta-models is a part of Atlas
Model Weaver (AMW) Project [AMW]. The disadvantage of this tool is common
with all similarity based matching algorithms, which is the possibility that after the
execution of the heuristic matching algorithm some links between matched elements
are still not created correctly, are useless or not created and their manual adjustment
is needed. See more in [mat].

Generic Model Management

The general field of model management has been defined in [BHJ+00] as the integral
process of model matching, merging, difference detection and other model manipu-
lation techniques. The further work of Sergey Melnik [Mel04] discusses the generic
model management as a common approach for metadata management irrespectively
of the application domain.

4.6. SUMMARY 47

Tracing

The described difference detection techniques are the techniques for direct comparison
of models. The changes trace approach is closely related to the problem of information
loss in versioning systems, described by Robbes and Lanza in [RL06].

4.6 Summary

In this section the meta-model evolution problem was illustrated on the example. The
example showed that meta-model changes may invalidate the models, which are the
instances of the changed meta-model. To solve this problem a comprehensive approach
for the detection of meta-model changes, their classification with the further migration
of the models onto the new version of the meta modes can solve this problem. The
proposition of this approach was done.

According to the proposed migration approach the first two stages of the migration
process consist in change detection and classification of the changes performed.

Two basic methods can be suggested for change detection: direct caparison and
change tracing. Because the change tracing approach is capable of collecting more
information about the performed changes, it promises to be able to deliver more
precise results for change classification.

In the current work I will describe how the change classification of the EMF based
meta-models can be performed using a standard EMF tracer tool, which is available
as part of the EMF framework. I will also give the recommendations about the data
that any meta-model change tracer be able to track. These recommendations can be
useful for the future development of tracing tools for meta-model change management.

48 CHAPTER 4. METAMODEL EVOLUTION PROBLEM ANALYSIS

Chapter 5

EMF Tracing Approach For
Change Detection and
Classification

In the previous chapter the general approach for model migration was described.
Change detection and classification are the first two steps of the model migration
process. Because the change tracing was defined to be preferable to the direct com-
parison approach, the current work focuses on this approach.

Building the tracing tools is a complex task. One of the most important require-
ments for such tools is: what information do such tracers have to track and in which
form to store this information? In the current work I am analyzing the types of
changes that can be done during meta-model evolution process and define a meta-
model that defines the models for storing the information for such changes.

Ideally a change tracer, built from scratch, should be able to store the tracked
information as an instance of this meta-model. In the current project, to be able to
“test” the designed meta-model, no special tracer is build. A generic built-in tracer
tool provided with the Eclipse Modeling Framework is used. The information stored
by this tool is later transformed to the instance of the designed meta-model. This
information is the object of analysis of the current chapter. The way to use this
information for the change classification is also explained in this chapter.

5.1 Tracing in Computer Science

The word “trace” and tracing is one of the widely used words in many sciences. It
is used in different meanings in several fields in mathematics, linguistics, computer
science and in engineering. Most usages of the term trace imply successive, stepwise
execution or dependency tracking.

In mathematics and computer science, trace theory aims to provide a concrete
mathematical underpinning for the study of concurrent computation, including the
problems of interleaving and non-deterministic choice. The term “trace” here roughly
corresponds to the dependence graph [BD96].

Another meaning of the terms “trace” in computer science is: a record of the
steps a program has executed. E.g. stack tracing is used for building debugger tools.
The sense of tracing in such case is the tracking of the connection between the source
code lexemes of the programming language and the real execution of the program,

49

50 CHAPTER 5. EMF TRACING APPROACH FOR CHANGE DETECTION

which enables the stopping of the execution on breakpoints or step-by-step program
execution.

In the MDSD area traceability usually refers to the ability of creating relationships
between models before and after the transformation [NZR07, Jou05].

5.2 Generic EMF Tracer

The standard EMF tracer is a general purpose EMF facility for supporting/imple-
menting transactions. Originally it was meant to be able to send the changes done to
the model by network. Therefore the information saved in traces is very compact and
closely corresponds to the way the EMF models are persisted in the XML Metadata
Interchange (XMI) documents.

The EMF tracer is capable of storing information of all add/delete/move/change
actions that can happen to any models created and edited in the EMF framework.
I.e. it is capable of storing this information for any models that are defined by any
meta-models, in their turn defined using Ecore meta meta model. Therefore it makes
no assumptions about the meta-model, but makes the assumption that the meta meta
model of the model is Ecore.

For the task of tracking the model changes the tracer can be attached to a model
the meta-model of which is an instance of Ecore meta meta model.

Technologically there is a plugin plugged into EMF+Eclipse framework. If a user
wants to save the tracing information, he has to enter the location of the file con-
taining the initial model and start recording. After that the selected model can be
modified and the tracing information about the modifications will be tracked. When
the modification is finished the collected information can be persisted.

5.2.1 Change meta-model

The information about the model modifications is saved in form of a model, the
meta-model of which (simplified) is shown in figure 5.1. The exact version of this
meta-model is shown in appendix A. This meta-model is available as a EMF plug-in.

The trace model, as defined by its meta-model, has one container element of type
ChangeDescription. The ChangeDescription element appears once per trace model
instance, and is the root element of a trace (when it is persisted in XMI). It holds
the information about all the model modifications recorded during one change session.
Namely it contains model elements added during the change session (containment ref-
erence objectsToAttach), references to the deleted model elements (objectsToDetach),
as well as a Map associating the modified model elements with the collections holding
the information about the changed structural features of these elements (objectChanges).
Here added/deleted/modified model elements are the objects, whose meta meta type
is a subtype of EClassifier. 1

The information about the modified structural features (references instances of
EReference meta meta class or attributes instances of EAttribute meta meta class)
of a model element is saved as the collection of elements of type FeatureChange.
This collection, as was already mentioned, is associated with the reference to the
modified model element using the Map of type EObjectToChangesMapEntry. Each
element of type FeatureChange from the collection contains the following information:
featureName (the name of the changed structural feature of the model element),
dataValue (the new value of the corresponding property, if it can be represented as

1Additions, deletions and moves of the model elements are the changes performed in the EMF
Tree editor.

5.3. ECORE SEMANTICS: INFLUENCE TO THE M1 MODELS 51

ChangeKind
ADD
REMOVE
MOVE

<<enumerati...>>

EObjectToChangesMapEntry
<<MapEntry>>

ChangeDescription

0..n+objectChanges 0..n

FeatureChange
featureName : String
dataValue : String
set : boolean = true
/ value : EJavaObject

0..n+value 0..n

EStructuralFeature
(from ecore)1

+feature

1

EObject
(from ecore)

1

+key

1

0..1
+referenceValue

0..1

0..n
+objectsToAttach

0..n 0..n
+objectsToDetach
0..n

ListChange
kind : ChangeKind
<<0..*>> dataValues : String
index : int = -1
moveToIndex : int
<<0..*>> / values : EJavaObject

0..n +listChanges0..n
0..1

+feature

0..1

0..n

+referenceValues

0..n

One per Trace
instance

Changed /
added /
deleted /
moved object

Data about
changed
strctural
feature

If the
structural
feture is an
array

File: F:\Change.mdl 18:14:49 17 October 2007 Class Diagram: change / Main Page 1

Figure 5.1: EMF Tracer Change meta model

string), feature (the reference to the corresponding modified structural feature of a
model element). 2

If a reference in the metaclass defined to have 0..* multiplicity, this means that
in the model instance there could be many instances of a reference with the same
name (i.e. a collection). The additions or deletions in the values of these references
are reflected as listChanges of type ListChange.

The instances of EOperation meta meta class are not parts of the model, they are
expressed only the source code. 3 Therefore the only data saved in the trace refers to
the additions/deletions/moves of model elements 4 and changes of structural features
of these model elements. 5

Basically the structure of this meta-model is designed to be aware of the structure
of the XMI documents only.

5.3 Ecore Semantics: Influence to the M1 models

As was already said the EMF tracer can be attached to any model the meta meta
model of which is Ecore. Therefore the changes are detected and represented based

2These are all the changes that can be done in the EMF property editor.
3EMF has no editor for modifying operations.
4Performed in EMF Tree editor.
5Performed in the property editor.

52 CHAPTER 5. EMF TRACING APPROACH FOR CHANGE DETECTION

on the semantics of the meta meta model of the edited model, i.e. Ecore semantics.
No assumptions about the semantics of of the meta-model is done.

Basically, the Ecore meta meta model prescribes expressing the models through
instances of classes, and describing additional properties of these instances through
attributes and references. Therefore the following semantical elements of Ecore meta
meta model can be distinguished:

• model elements, instances of EClass meta meta class and persisted as XMI
elements (resemble the ontological notion of “concepts” or “entities”);

• attributes, instances of EAttribute meta meta class and persisted as XMI at-
tributes (resemble the ontological notion of “attributes” or “properties”);

• references, instances of EReference meta meta class and persisted also as XMI
attributes, but with the semantical constraint that only existing object can be
referenced (resemble the ontological notion of “relationships” among “entities”);

• containment references to model elements; the referenced model elements are
persisted in XMI as child elements, but with the semantical constraint that
only existing object can be referenced (resemble the ontological notion of “part-
of relationships”);

• generalization relationships among model elements, semantically basically means
that some classes have common sets of structural features (references or at-
tributes), is not directly reflected in XMI, but through duplication of the struc-
tural features in all the subclasses of a common super class (resemble the onto-
logical notion of “subsumption relationships”);

In the next sections the explanation of the EMF tracer mechanisms for dealing
with these semantical constraints is described.

5.3.1 EMF Tracer Semantical Constraints: Containments

One of the assumptions is done about the containment references of a model element.
If a M1 model element (an instance of EClass meta meta class) has contained model
elements (which in M2 level is modeled through containment reference to other model
instances of M3 EClass), then the deletion of this M1 model element will cause the
deletion of the contained model elements. This is done, because on the M3 level
EClass has reference called eAllContainments. Therefore, when a model element of
EClass meta meta class is deleted, the EMF knows that the meta class of this element
has one to many reference (instance of EReference) called eAllContainments, that
references instances of another meta-meta-class. The EMF reads the array of type
EReference called eAllContainments of the M2 object (of type EClass) and gets
the value of the EType reference of each such reference in this array, the M2 objects
of M3 EClass referenced by EType are then correspondingly deleted.

The impossible existence of the model elements without their container elements
is the central semantical rule of the Ecore meta meta model. The consequences of it
is the constraint are commonly understood for M2 models, e.g. classes have to exist
inside a package, or that it is impossible to create an attribute which is not contained
in any class. Basically these constraints are modeled through containment reference
between package and its classes, classes and its structural features in the Ecore meta
meta model.

The deletion of an object with all the contained sub-objects is considered as one
change, due to the assumption that an object cant exist outside its container.

5.4. TRACING THE META-MODEL CHANGES WITH THE EMF TRACER 53

Meaning for the XMI Document

From the point of view of the persistent representation of models, the containment
reference basically means that the element is contained inside another container el-
ement. Therefore if the container element is deleted, everything inside it is deleted
too.

5.3.2 EMF Tracer Semantical Constraints: Referenced Ob-
jects

Another important semantical constraint is that references cannot reference the deleted
objects. Therefore when an object is deleted, it sends the event that it was deleted.
As the result the value of the reference to this object in other objects is set to null
(i.e. unset).

In the case of deletion an object and the corresponding references to it, the two
deletions are accepted as different changes. The use of the eventing mechanism does
not give the possibility to distinguish between two events, if the reference should be
deleted because of the deletion of the referenced object, or because of the deletion of
acually the reference itself by the user in the property editor.

Meaning for the XMI Document

Because in the XMI document an object and a reference to it are represented as
different independent XMI elements, the changes to both of them are also considered
as independent.

5.3.3 EMF Tracer Semantical Constraints: One-to-many Ref-
erences

The one-to-many references referring the collections of model elements in the XMI
are shown as indexed sequences of values (or namely IDs of the XMI elements they
reference). This is a pure consequence of the way, the models are persisted in XMI. If
the persistence format is different, then this would not be an issue, the one-to-many
references would be persisted as one-to-one references, and their changes would be
reflected in the same way.

5.4 Tracing the meta-model Changes with the EMF
Tracer

In the previous section the work of EMF tracer is introduced and the meta-model
describing the structure of the traced changes was explained. As was already men-
tioned this tracer can be attached to any model, the meta meta model of which is
Ecore. Consequently it can be attached to a meta-model (M2), the meta-model of
which (M2+1 = M3) is Ecore, and the meta meta model of (M2+2 = M4, i.e. the
meta-model of Ecore meta meta model) is again in its turn Ecore. The relation among
these meta-modeling levels can be also considered as:

• M2 meta-model are “living” on the level of M1 models (M1’ = M2);

• Ecore is “living” on the level of M2 meta-models (M2’ = M3);

• Ecore is ‘living” on the level of M3 meta meta model (M3’ = M4).

54 CHAPTER 5. EMF TRACING APPROACH FOR CHANGE DETECTION

The tracer treats then the meta-model as a model (M1’ = M2) based on its Ecore
meta meta model(M3’ = M4) and has no knowledge about the meta-model of the
traced instance (M2’ = M3). This meta-model in case of attaching the EMF tracer
to any M2 instance is Ecore.

5.4.1 Trace Refinement Problem Description

In the previous section this mechanism for tracing changes in any models based on
random meta-model is explained. The definite advantage of the EMF tracer is the
capability of detecting changes for any models, making the assumption only about its
meta meta model.

For the task of model migration, the object of the current research, it is of a
great importance to have the explicit information about the change dependencies.
Because each change is classified as additive/resolvable/non-resolvable for the further
assigning of the appropriate migration algorithm, it is important to have the explicit
information about the “transactional” dependencies of the changes. The type of the a
composite change strongly depends on the types of it’s sub changes, and therefore, if
one of sub changes is not resolvable, then the whole composite change is non-resolvable
too. E.g. if a model element is deleted then its type (resolvable/non-resolvable) can
be assigned only if the types of deletions of all its contained sub-elements is explicitly
analyzed.

It is also important to know the semantics of the Ecore elements. I.e. what exactly
each change of each element of M2 models means, because each M2 model element
or structural feature poses definite meaning to the corresponding M1 models and is
important for the M1 model migration process.

The general approach to be able to detect composite changes is to enrich the
traced information with explicit change dependence information. In the context of
the MDSD approach such operation implies a transformation of the trace instance
and the meta-model instance to the model, holding the information about the change
dependencies, which is an instance of a meta-model specially designed for holding such
information. The next chapter describes the requirements for such target meta-model
and its design.

Chapter 6

Trace Refinement

6.1 Requirements to the meta-model For Change
Classification

Because each element used for creation of M2 models is defined in Ecore M3 model
(common DSL for M2 model creation), it has a commonly understood meaning (se-
mantics). When building the M2 models using these M3 modeling elements and
features semantical meaning (semantical constraints) are defined for the M2 models
(the syntax and semantics of the DSL). This semantics influences the corresponding
M1 models, defining the form they have to conform to be valid M1 models with re-
spect to M2. Consequently, if the M2 models change, the changes may invalidate
the corresponding M1 models, and the nature of this invalidation depends on what
modeling element (feature) was changed in M2. Therefore, to classify all possible
changes that can happen to M2 models and their influence to the corresponding M1
models we have to analyze the following things:

• the modeling element (feature) than was changed in M2 model (its semantical
meaning defined by Ecore M3);

• the decencies that these changes have to the M2 model (by analyzing the the
structure of M2 instance);

• the instances of M1 models that conform to the change M2 model (the values
of the changed M2 elements and features).

Therefore for the task of creation of a Ecore sematnics-aware refined traces, it is
desired that every type of a change corresponds (is associated) with the corresponding
Ecore model element. Therefore the new meta-model for change classification should
resemble the Ecore M3 structure and semantics.

Another requirement is that the meta-model should have the appropriate design
to be able to store the information about change dependencies as was described in
the previous chapter.

The last nice-to-have requirement is the possibility to combine traces. I.e. if there
are three versions of meta-models M2, M2’ and M2” and the traces between M2’-M2
and M2”-M2’ the possibility to detect changes between M2”-M2 is desired.

55

56 CHAPTER 6. TRACE REFINEMENT

6.2 Semantics of Ecore Modeling Concepts

Every M2 model element, which is an instance of Ecore EModelElement subclass in
the process of modification can be added, deleted or moved. The consequences of such
changes to the corresponding M1 models can be additive, resolvable or non-resolvable
as shown in the table D.

The additional information about the M2 modeling element, defining their prop-
erties, is expressed through setting the corresponding values of the model element’s
structural features. The changes to these values also may invalidate the M1 models.
The analysis of such changes is shown in the table D.2.

6.3 Composite Changes Analysis

By analyzing the Ecore meta meta model, the conclusion about the change depen-
dencies can be done. The dependencies about changes can be expressed in form
of changes and their sub changes, that consequences of their super change. In the
following sections all such dependencies are listed.

6.3.1 Additions

By the addition of a model element all its required structural features must be set.
Actually in the Ecore model quite a few structural features of model elements are
marked as required. This is done, because the M2 models may exist (be edited or
persisted) without these features set, but the instantiation of the corresponding M1
models is impossible. Therefore by the word “required” we actually mean the necessity
for the creation of valid M1 instances of the model element.

Additions of Packages: PackageAdd

Subchanges:

• Rename - name should be set;

• NSURIChange - nsURI should be set;

• NSPrefixChange - nsPrefix should be set.

Additions of Classes: ClassAdd

Subchanges:

• Rename - name should be set.

Additions of Typed Elements: ReferenceAdd, AttributeAdd, OperationAdd,
ParameterAdd

Subchanges:

• Rename - name should be set;

• TypeChange - eType should be set.

6.3. COMPOSITE CHANGES ANALYSIS 57

6.3.2 Deletions

Deletions of M2 model elements require the cascade deletion of the contained model
elements in M2 models.

The deletion of a model element will also unset the eType structural feature, where
the value of eType is set to the deleted model element. Basically, eType value is the
instantiation of eReference between an instance of eReference model element and
an instance of eClassifier. The unset of the eType will invalidate the correspond-
ing eReference instance untill some actions, e.g. its deletion or move (change of
eType) will be done. This invalidation means that the M1 instances of the these
M2 eReference instances are no more valid and have to be deleted. Therefore the
deletion of a model element on M2 level will cause the deletion of all the objects in-
stantiating this model elements. Their deletion will cause the deletion of all references
to these objects from other M1 objects.

Consequently, two types of subchnges changes can be detected:

• M2 level subchanges, when the effect of a change to M2 models is visible and
analyzed;

• M1 level subchanges, when the effect of a change to the corresponding M1
models is predicted; to consider these possible subb

The first group of subchanges is the consequences of the compositional integrity of
M2 models as defined in Ecore M3. The second group of subchanges are the actions
preserving the referential integrity for M1 models as defined in M2 level.

Deletion of Packages: PackageDelete

Package is not an instance, but a way of grouping M2 model elements. Therefore it
cannot be directly instantiated on M1 level and therefore have no M1 level subchanges.

Subchanges:

• PackageDelete - deletion of contained sub-packages.

• ClassDelete - deletion of contained classes.

Deletion of Classes: ClassDelete

Subchanges (M2 level):

• AttributeDelete - deletion of contained attributes;

• ReferenceDelete - deletion of contained (outgoing) references;

• OperationDelete - deletion of contained operation;

Subchanges (M1 level):

• ReferenceDelete - deletion of incoming references, which in the M2 level means
the invalidation of model elements of type EReference and on the M1 level
means the real deletion of references to the deleted class instance.

• Deletion of the instances of the deleted M2 Class means that the part of the
class that is defined in the superclass is also deleted, therefore the structural
features contained in the superclass and incoming to the superclass references
have to be analyzed and their instances deleted.

58 CHAPTER 6. TRACE REFINEMENT

Deletion of References: ReferenceDelete

Subchanges:

• OppositeChange - if the eOpposite reference is set, then the eOpposite structural
feature of the opposite reference have to be unset. This is a consequence of the
deletion of a model element of type EReference and the deletion of a reference
to this model element, which is in Ecore M3 defined as a reference to a model
element of type EReference and called eOpposite.

Deletion of Operations: OperationDelete

Subchanges:

• ParameterDelete - deletion of contained parameters.

Deletion of a Superclass

If a superclass is deleted from an M2 model, this is an ambiguous change. The static
semantics of Ecore meta-model is not sufficient is this case, the dynamic semantics
of the DSL has to be considered also. The deletion of a superclass semantically may
mean the that its structural features should be moved to his subclasses or that the
subclasses (or some of them) do not need the features defined in the superclass any
more. Therefore it is an example of automatically non-resolvable change and the
decision about the consequences of this change should be defined by the user.

6.3.3 Changes of StructuralFeatures

Change of the eSuperTypes of a class: SuperTypeChange

Semantically for M1 models it means addition/deletion of a set of structural features
to a class.

Change of the eType of a reference: TypeChange

Semantically for M1 models it means addition/deletion/move of a reference.

Change of the eOpposite of a reference: OppositeChange

Semantically it means the same action for the opposite reference.
Subchanges:

• OppositeChange - the corresponding change of eOpposite in the opposite refer-
ence.

6.4 Design of the Refined meta-model

6.4.1 Composite Changes

To store the dependencies among the changes the mechanism of change containment
can be successfully applied. The parent change than causes subchanges would contain
these subchanges as children, as shown in figure 6.1.

6.4. DESIGN OF THE REFINED META-MODEL 59

6.4.2 Change Classification Structure

As defined in section 6.1 the meta model for change representation has to define
different classes of changes and associate them with the corresponding Ecore model
element or feature.

As was already discussed each model element can be added/deleted/moved or
its structural feature can be changed. As shown in appendix D the resolvable/non-
resolvable property of additions, deletions or moves of different model elements de-
pends on the types of these model elements, i.e. to decide if addition/deletion/move
of a model element is resolvable or not the information about the type of this ele-
ment is needed, as well as the analysis of the corresponding structural features of this
element. Therefore, because the nature of this analysis depends on the type of the
model element and its structural feature, it is reasonable to classify the changes not
only according to the action performed (add/delete/move) but also according to the
types of elements. Consequently the following classification, shown in figure 6.1 can
be proposed.

Change

FeatureChangeMoveAdd Delete

superChange

subChanges

Figure 6.1: Main Change Supertypes

The structural features of model elements can also be changed. The kind of these
changes depends on the type of the structural feature. The decision if such change
is resolvable or not depends on the structural feature and on the model element
containing it as shown in table D.2. The changes of the structural features can be
classified by the types of the these features as shown in appendix E

6.4.3 Association Classes

Each change class from the structure shown in appendix E has to have a reference
to the corresponding model element or its structural feature that was changed. To
fulfill the requirement of trace combinations the meta-model for change classification
has to provide the possibility for associating exactly one change class with each model
element or its structural feature. Therefore the one to one bidirectional association has
to associate each change class with the corresponding model element or its structural
feature.

Because the EMF semantics does not have the means to define the bidirectional
associations directly, but only through a pair of opposite references, to associate one
change class with one Ecore model element a change to the Ecore meta-model would
be needed. Another approach is to use the association classes. I.e. the classes that
repeat the Ecore structure and reference its model elements and structural features
with one-to-one unidirectional reference and similarly have one-to-one unidirectional
references to the corresponding change classes. The example of such association for
the M2 model elements instantiating Ecore EClass is shown in figure 6.2.

60 CHAPTER 6. TRACE REFINEMENT

NamedElement

Change

Addition

Deletion

Move

Rename

ReferenceAdd

ReferenceDelete

ReferenceMove

addition

deletion

move

InterfaceChange

AbstractChange Class

rename

abstractChange

interfaceChange

object

object

0..1

0..1

0..1

0..1

0..1

0..1

1

1

ENamedElement

metaModel
Element

(from Ecore)

Figure 6.2: Example: Classification of the Class Changes

The instances of the association classes resemble the structure of the M2 models.

6.4.4 Association Classes Structure

The association classes repeat the Ecore class structure. The difference in the struc-
ture of the association classes with the Ecore model is the addition of one more
reference from the referenced model elements to the references refferencing them, i.e.
the structure of the association classes resemble the structure of the M2 models but
all the references here are bidirectional. This is done to provide easier detection of
reference deletion, when the referenced model element is deleted.

The structure of the association classes is shown in figure 6.3.

6.4. DESIGN OF THE REFINED META-MODEL 61

ModelElement

NamedElement

StructuralFeature

TypedlElement

Classifier

ClassReferenceAttribute Package

OperationParameter

type

Incoming
References

Figure 6.3: Association Class Heierarchy

62 CHAPTER 6. TRACE REFINEMENT

Chapter 7

Transforming Change
Meta-Model to the Refined
Meta-Model

Transformations are the main mechanism by which the models are transformed to
other models with different meta-model. To build transformation different transfor-
mation languages exist. The syntax and semantics of some of these languages is also
defined in form of a meta-model (e.g. ATL), some languages do not have it. The
overview of the transformation languages and their features is described in [CH03].

The Atlas Transforamtion Language (ATL) is a popular transformation language
for EMF based model-to-models transformations, is conveniently integrated in the
EMF framework and possessed extensive documentation, therefore the change trance
refinement transformation described in this work was done in this language.

7.1 Transformation Configuration

As was said before the trace saved by EMF tracer is not aware of the meta-model that
was the object of change. To be able to analyze the change dependencies the knowl-
edge about the meta-model structure is needed. Therefore, to produce an instance of
the meta-model for change classification described in the chapter 6 the transformation
has to have two input models: the trace and the instance of the original meta-model,
that has been modified. This approach has been prototypically implemented and
tested. It is schematically depicted in figure 7.1.

The problem with this approach is the inability to accumulate changes from several
trace instances. To be able to fulfill this requirement the two-step transformation can
be suggested:

Initializing Transformation - the first transformation takes the M2 meta-model as
its input and produces the empty meta-model for change classification (ChangeMM),
which consists only of the association classes part, referencing all the elements
of the meta-model under change. No change classes are instantiated. The pro-
duced output corresponds to the situation, when no changes were done to the
meta-model.

Refining Transformation - the next transformations refine the output of the previ-
ous one (initializing or previous refining transformation), by taking the ChangeMM

63

64 CHAPTER 7. TRANSFORMING CHANGE MM TO THE REFINED MM

Change.ecore

Trace Instance

Transformation

ChangeMM.ecore

Target Instance
M2

M2

M1

M1

Ecore
M2

Meta model
M1

Instance of

Instance of

depends on

depends on

depends on

Figure 7.1: General Transformation Scheme

meta-model and the trace instance as inputs and producing the enriched ver-
sion of ChangeMM instance instantiating the change classes in correspondance
to the changes detected in the trace and attaching them to the corresponding
association classes.

This approach is shown in figure 7.2. With this approach the possibility exist to
analyze sequences of traces and accumulate changes recorded during several tracing
sessions. In the further sections this approach will be described in more details.

Trace Instance
Trace Instance

Trace Instance

Initializing
Transformation

ChangeMM.ecore

Association model

Ecore

Meta model

M

Instance of

depends on M+1 Refinement
Transformation

Association model
+

Changes

Instance of

M+1

M

Change.ecore

Trace Instance

Instance of

M

M+1

Figure 7.2: Two-Phase Transformation Scheme

7.2. INITIALIZING TRANSFORMATION 65

7.2 Initializing Transformation

This transformation is the a simple decoration transformation. The input of the
transformation is an M2 model. Each class in this M2 model (i.e. instance of EClass)
should be associated with the corresponding association class from the association
class hierarchy shown in figure 6.3.

To produce the association classes structure as an output of the transformation
each model element of M2 model has to be mapped to the corresponding ChangeMM
association class. In ATL it is done in the following way:

module initTransformation;
create OUT : Changemm from MODEL : EcoreMM;

rule EcoreNamedElement {
from

ine : EcoreMM!ENamedElement
to

one : Changemm!NamedElement (
xmiID <− ine. xmiID

)
}

rule EcorePackage extends EcoreNamedElement{
from

ip : EcoreMM!EPackage
to

op : Changemm!Package (
elements <− ip.eClassifiers−>union(ip.eSubpackages)

)
}

−− etc. for every model element from the association classes hierarchy

The problem of ATL transformation language is that it is technically inconvenient
to produce the output model that can hold links to its input model. Because each
input model element is transformed (mapped) to a new output element, the attempt to
reference the input model element from the output model element results in creation
of a reference to transformed input element. The proper way of establishing links
from the output model elements to the corresponding input model elements in ATL
is described in [Jou05].

Another work -around is to store the initial IDs of model elements in the output
model of initializing transformation, and with the help of auxiliary refining trans-
formation (which uses this model with stored IDs as its input) to produce a model
enriched with the references to the elements of a initial model by matching the IDs
of the elements. This transformation is shown in the following listing.

module RefiningSubTransformation;
create OUT : Changemm refining MODEL : EcoreMM, IN : Changemm;

helper

def : elements : EcoreMM!ENamedElement =
EcoreMM!ENamedElement.allInstancesFrom(’MODEL’)−>asSequence();

rule meta−model {

66 CHAPTER 7. TRANSFORMING CHANGE MM TO THE REFINED MM

from
ine : Changemm!meta−model

to
one : Changemm!meta−model (

elements <− ine.elements
)

}

rule NamedElement {
from

ine : Changemm!NamedElement
to

one : Changemm!NamedElement (
xmiID <− ine.xmiID,
meta−modelElement <− thisModule.elements

−>select(i | i. xmiID = ine.xmiID)−>first()
)

}

7.3 Refining Transformation

The refining transformation has to be capable to read the elements of a meta-model
and check if they can be matched to any rule. The condition for matching is met if
the set of changes from the change model contains the information about the changes
of this element.

In the listing below part of this refining transformation is shown, which is matched
in case an element of M2 is renamed.

module RefiningTransformation;
create OUT : Changemm refining IN : Changemm, TRACE : Change;

helper

def : changeDescription : Change!ChangeDescription =
Change!ChangeDescription.allInstancesFrom(’TRACE’)−>asSequence()

−>first();

helper context Change!ChangeDescription

def : getElementsToRename() :
Sequence (Change!EObjectToChangesMapEntry) = self.objectChanges

−>asSequence()−>select(f |
(f.key.oclIsKindOf(Ecore!ENamedElement)) and
f.value−>exists(k | k.featureName = ’name’))−>asSequence();

helper context Changemm!NamedElement

def : isRenamed() : Boolean =
thisModule.changeDescription.getElementsToRename()−>exists(i |

i.key = self.metamodelElement);

helper context Changemm!NamedElement

def : getNewName() : String =

7.3. REFINING TRANSFORMATION 67

thisModule.changeDescription.getElementsToRename()−>select(i |
i.key = self.metamodelElement)−>last().value−>select(k |
k.featureName = ’name’)−>last().value;

rule EcoreNamedElement {
from

ine : Changemm!NamedElement (ine.isRenamed())
to

one : Changemm!NamedElement (
xmiID <− ine. xmiID ,
rename <− if (ine.isRenamed()) then thisModule.Rename(ine)

else OclUndefined endif
)

}

lazy rule Rename{
from

ine : Changemm!NamedElement
to

one : Changemm!Rename(
newValue <− ine.getNewName(),
object <− ine,
superChange <− one.object.addition

)
}

7.3.1 Scalability with Meta-Model Size

This implementation approach does not scale good with model size, because every
element has to be reviewed independently from the amount of changes made. For big
models this results in exhaustive search of changes in unchanged model regions. An
optimization of this approach is feasible if the model is partitioned and only changed
model partitions are checked (as e.g. marked “dirty”).

However, currently no transformation languages provide efficient mechanism for
the refinement transformations. The existing transformation languages either not
support refining transformations, or have no efficient algorithms for performing op-
timization on big models when only a small part of a model is refined by the trans-
formation. Conceptually the efficient performing of such operations is an important
purpose and challenge of the model refinement, which is a key issue of MDSD.

68 CHAPTER 7. TRANSFORMING CHANGE MM TO THE REFINED MM

Chapter 8

Conclusions and Future Work

8.1 Summary

Within the scope of the current Master Thesis an overview of the existing software
engineering approaches for the solution of software evolution and complexity problem
was done. The trend of the modern software engineering is the shift from program code
development to the modeling of the application domain. A promising approach is in
this area is the Model-Driven Software Development, which considers a domain model
and program code as two facets of the produced software. Therefore the problem of
software evolution in MDSD closely relates to the problems of domain evolution and
model evolution.

The semantics of domain is formalized in form of a meta-model, therefore, the
domain evolution problem equals to the meta-model evolution problem. A particular
part of the real world is then described using the meta-model elements and stored in
form of a model. The existing related work in this area was studied and the problem
of models migration when their meta-model is changed was illustrated. The general
workflow for model migration was studied.

The first stage of any model migration process is the detection and classification
of changes for the estimation of their severity and choose of the appropriate migra-
tion scheme. In the current work two possible approaches for change detection were
described and evaluated: the direct comparison and change tracing. The tracing ap-
proach was decided to be more flexible and powerful (its power only on the design
of the tracer), because it is capable of collecting and analyzing more information
about how the changes to the meta-model were done, thus providing the possibility
for the unambiguous change detection, which is an irresolvable problem of the direct
comparison approach.

In the current work the design of a meta-model for change classification was pro-
posed. The traced changes should be accumulated in the form of an instance of this
meta-model. In the work it was explained that to be able to classify changes the
semantics of the M3 meta-model of the changed M2 model has to be analyzed, to de-
tect the composite change dependencies, because these changes have to be accepted
or rejected as one transaction.

The model containing the classified changes can be obtained from the specially
build tracer, that can react to the change events in the meta-model, analyze their
semantics, classify and save them in form of an instance of this meta-model (online
change classification) or the semantics of the meta-model of the traced model can
be analyzed later, when a session of changes is finished (offline approach). With
the second approach the same tracer can be attached to the models with different

69

70 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

meta-models. The traced results are later enriched with the meta-model semantics of
the traced instance. In the case when the M2 models are traced their meta-model is
always Ecore M3. This approach was the focus of the current work, due to availability
of such general purpose tracer in the Eclipse Modeling Framework.

For the enrichment of the instances traced by the standard EMF tracer the trans-
formation adding the semantics of Ecore M3 was developed. The advantages of two-
phase transformation were discussed, such as the capability of accumulating changes
collected from several successive traces.

8.2 Results and Conclusions

The main results of the given Master Thesis are following:

• The design of a meta-model for change classification is build, which is aware of
the semantical constraints of Ecore M3. Although it is not the only possible de-
sign variant for change classification meta-model, the main requirements to this
meta-model were clarified, and the proposed solution fulfills these requirements.

• The transformation enriching the standard EMF tracer model with the Ecore
M3 semantical constraints is developed. The implemented transformation is
capable of storing the information about the change dependencies, types of
changes and of associating changes with the corresponding M2 model elements.
The disadvantage of it is the impossibility of change accumulation from several
successive traces.

• A two-phase classification approach was proposed consisting in a transformation
for initialization of association classes decorating the Ecore M3 and the refining
transformation for associating the traced and classified changes with the corre-
sponding association classes. This approach is capable of change accumulation.

• The transformation of change traces to the designed meta-model for change
classification faces the problem of scaling with the size of M2 models. How-
ever, it is considered to be the problem of tools for definition of refinement
transformations. If this problem is a key practical constraint the functionality
of this refining transformation can be implemented also using some imperative
programming language, e.g. Java.

8.3 Future Work

Currently the following directions for the future work can be foreseen:

• It should be further analyzed exactly which information is needed to be stored
in change classes of the developed meta-model. This information should be
sufficient for building a transformation that takes the the model with classified
changes as its input and for each type of input change-class: the M1 instances,
and prescribes the rules of how the M1 instances have to be changed to become
valid with respect to the new M2 model.

• The approach for the semi-automatic resolution of non-resolvable changes should
be further studied. Information and in what form does the user have to see to be
able to resolve the changes manually, in what form input gathered from the user
has to be stored. A possible way is to store the user input in the corresponding
changed class of the Changemm meta-model designed in this work.

8.3. FUTURE WORK 71

• Another possible way to build the change classification meta-model is not to
use association classes to associate changes with the corresponding M2, but to
build the decorator model of the M2 model elements. The implementation of
the decorator pattern for Ecore models should be studied.

72 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Appendix A

Change Metamodel Complete

ChangeKind
ADD
REMOVE
MOVE

<<enumerati...>>

ResourceChange
resourceURI : String
/ resource : EResourc...
/ value : EEList

apply()
applyAndReverse()

EObjectToChangesMapEntry
<<MapEntry>>

FeatureChange
featureName : String
dataValue : String
set : boolean = true
/ value : EJavaObject

apply(originalObject : EObject)
applyAndReverse(originalObject : EObject)

0..n+value 0..n

ChangeDescription

apply()
applyAndRevers...

0..n+objectChanges 0..n

0..n
+resourceChanges
0..n

EStructuralFeature
(from ecore)1

+feature

1

ListChange
kind : ChangeKind
<<0..*>> dataValues : String
index : int = -1
moveToIndex : int
<<0..*>> / values : EJavaObject

apply(originalList : EEList)
applyAndReverse(originalList : EEL...

0..n+listChanges 0..n 0..1
+feature

0..1

0..n
+listChanges

0..n

EObject
(from ecore)

1

+key

1

0..10..1

0..n

+objectsToAttach

0..n
0..n

+objectsToDetach

0..n

0..n0..n

FeatureMapEntry
featureName : String
dataValue : String
/ value : EJavaObject

1
+feature
1

+featureMapEntryValues

0..1

+referenceValue

0..1

File: c:\mariya\eclipse3.2.1\eclipse\ws\org.eclipse.emf.ecore.change\model\Change.mdl 14:29:20 18 October 2007 Class Diagram: change / Main
 Page 1

Figure A.1: Change Meta-Model

73

74 APPENDIX A. CHANGE METAMODEL COMPLETE

Appendix B

Ecore Meta-Meta-Model
Complete

EEnum

getEEnumLiteral(name : String) : EEnumLiteral
getEEnumLiteral(value : int) : EEnumLiteral
getEEnumLiteralByLiteral(literal : String) : EEnumLiteral

EEnumLiteral
value : int
instance : EEnumerator
literal : String

0..n

+eEnum

+eLiterals 0..n

ENamedElement
name : String

EModelElement

getEAnnotation(source : String) : EAnnotation

EAnnotation
source : String
details : EStringToStringMapEntry

0..n

+eModelElement

+eAnnotations0..n

EFactory

create(eClass : EClass) : EObject
createFromString(eDataType : EDataType, literalValue : String) : EJavaObject
convertToString(eDataType : EDataType, instanceValue : EJavaObject) : String

ETypedElement
ordered : boolean = true
unique : boolean = true
lowerBound : int
upperBound : int = 1
/ many : boolean
/ required : boolean

EPackage
nsURI : String
nsPrefix : String

getEClassifier(name : String) : EClassifier

1

1

+ePackage 1

+eFactoryInstance1

0..n+eSubpackages 0..n

+eSuperPackage

EDataType
serializable : boolean = true

EParameter

EClassifier
instanceClassName : String
/ instanceClass : EJavaClass
/ defaultValue : EJavaObject

isInstance(object : EJavaObject) : boolean
getClassifierID() : int

0..1

+eType

0..1

0..n +ePackage+eClassifiers0..n

EReference
containment : boolean
/ container : boolean
resolveProxies : boolean = true

0..1+eOpposite 0..1

EAttribute
iD : boolean

1

+eAttributeType

1

EOperation

0..n+eOperation

+eParameters

0..n

0..n+eExceptions 0..n

EClass
abstract : boolean
interface : boolean

isSuperTypeOf(someClass : EClass) : boolean
getFeatureCount() : int
getEStructuralFeature(featureID : int) : EStructuralFeature
getFeatureID(feature : EStructuralFeature) : int
getEStructuralFeature(featureName : String) : EStructuralFeature

0..n

+eSuperTypes

0..n

0..n

+eAllSuperTypes

0..n

0..n

+eAllReferences
0..n

0..n

+eReferences
0..n

0..n
+eAllContainments

0..n

1 +eReferenceType1

0..n +eAllAttributes0..n

0..n +eAttributes0..n

0..1 +eIDAttribute0..1

0..n

+eContainingClass+eOperations

0..n0..n

+eAllOperations

0..n

EStructuralFeature
changeable : boolean = true
volatile : boolean
transient : boolean
defaultValueLiteral : String
/ defaultValue : EJavaObject
unsettable : boolean
derived : boolean

getFeatureID() : int
getContainerClass() : EJavaClass

0..n+eAllStructuralFeatures 0..n
0..n

+eContainingClass

+eStructuralFeatures

0..n

File: c:\mariya\eclipse3.2.1\eclipse\ws\org.eclipse.emf.ecore\model\Ecore.mdl 21:04:17 19 October 2007 Class Diagram: ecore / Ecore Relations,
Attributes, and Operations Page 1

Figure B.1: Ecore Meta-Meta-Model

75

76 APPENDIX B. ECORE META-META-MODEL COMPLETE

Appendix C

XMI Representation

C.1 XMI Representation of BPMN Process Model

<?xml version="1.0" encoding="ASCII"?>
<bpmn:BProcess xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
xmlns:bpmn="http://denysova.org/bpmn"
xsi:schemaLocation="http://denysova.org/bpmn bpmn.ecore">

<elements xsi:type="bpmn:Event" name="Receive Expense Report"
outputs="//@elements.11"/>

<elements xsi:type="bpmn:Gateway" name="Account Exists?"
inputs="//@elements.11" outputs="//@elements.12 //@elements.13"/>

<elements xsi:type="bpmn:Activity" name="Create Expense Account"
inputs="//@elements.12" outputs="//@elements.14"/>

<elements xsi:type="bpmn:Activity" name="Review for Pre−Approval"
inputs="//@elements.13 //@elements.14" outputs="//@elements.15"/>

<elements xsi:type="bpmn:Gateway" name="Pre−Approved?"
inputs="//@elements.15" outputs="//@elements.16 //@elements.17"/>

...

<elements xsi:type="bpmn:Event" name="Inform Employee"
inputs="//@elements.22 //@elements.23"/>

<elements xsi:type="bpmn:SequenceFlow" name="1"
start="//@elements.0" end="//@elements.1"/>

<elements xsi:type="bpmn:SequenceFlow" name="2 No"
start="//@elements.1" end="//@elements.2"/>

<elements xsi:type="bpmn:SequenceFlow" name="3 Yes"
start="//@elements.1" end="//@elements.3"/>

<elements xsi:type="bpmn:SequenceFlow" name="4"
start="//@elements.2" end="//@elements.3"/>

<elements xsi:type="bpmn:SequenceFlow" name="5"
start="//@elements.3" end="//@elements.4"/>

<elements xsi:type="bpmn:SequenceFlow" name="6 Otherwise"
start="//@elements.4" end="//@elements.5"/>

<elements xsi:type="bpmn:SequenceFlow" name="7 Amount < 200 "
start="//@elements.4" end="//@elements.7"/>

...

</bpmn:BProcess>

77

78 APPENDIX C. XMI REPRESENTATION

C.2 XMI Representation of BPMN Meta Model

<?xml version="1.0" encoding="UTF−8"?>
<ecore:EPackage xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="bpmn"
nsURI="http://denysova.org/bpmn" nsPrefix="bpmn">

<eClassifiers xsi:type="ecore:EClass" name="BProcess">
<eStructuralFeatures xsi:type="ecore:EReference" name="elements" upperBound="−1"

eType="#//NamedElement" containment="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="NamedElement" abstract="true">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Node" abstract="true"

eSuperTypes="#//NamedElement">
<eStructuralFeatures xsi:type="ecore:EReference" name="inputs" upperBound="−1"

eType="#//SequenceFlow" eOpposite="#//SequenceFlow/end"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="outputs" upperBound="−1"

eType="#//SequenceFlow" eOpposite="#//SequenceFlow/start"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Activity" eSuperTypes="#//Node"/>
<eClassifiers xsi:type="ecore:EClass" name="Event" eSuperTypes="#//Node"/>
<eClassifiers xsi:type="ecore:EClass" name="Gateway" eSuperTypes="#//Node"/>
<eClassifiers xsi:type="ecore:EClass" name="SequenceFlow"

eSuperTypes="#//NamedElement">
<eStructuralFeatures xsi:type="ecore:EReference" name="start" eType="#//Node"

eOpposite="#//Node/outputs"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="end" eType="#//Node"

eOpposite="#//Node/inputs"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="diagram">

<eStructuralFeatures xsi:type="ecore:EReference" name="bp" upperBound="−1"
eType="#//BProcess" containment="true"/>

</eClassifiers>
</ecore:EPackage>

Appendix D

Classification of Ecore Meta
Model Changes

Element Operation A R N Comment
EPackage Add X

Remove X content resolvable
X content unresolvable

EClass Add X
Remove X Casc. delete on outgoing containment ref.

EDataType Add X
Remove X All attributes typed with the concerned

data type have to be converted
EEnum Add X

Remove X Same as EDataType
EEnumLiteral Add X

Remove X All M1 instances with this value have
to be converted to another value

EReference Add X min. cardinality == 0
X min. cardinality > 0

Remove X All corresp. M1 links have to be removed
EAttrribute Add X min. cardinality == 0

X min. cardinality > 0
Remove X All M1 instances have to be removed

Table D.1: Classification of add and remove operations on an Ecore meta-model

Attribute/Reference A R N Comment

ENamedElement

name X
EPackage

nsURI X
nsPrefix X

eClassifiers X
eSubpackages X
Continued on next page

79

80 APPENDIX D. CLASSIFICATION OF ECORE META MODEL CHANGES

Attribute/Reference A R N Comment

eSuperPackage X
ETypedElement

ordered X false⇒true should yield a warning
unique X true⇒false

X false⇒true
lowerBound X decrease

X increase
upperBound X increase

X decrease
eType X new type super class of old type

X any other case

EStructuralFeature

changeable X
volatile X true⇒false

X false⇒true and lowerCardinality == 0
X false⇒true and lowerCardinality != 0

transient X true⇒false: compute attr. and store value
X false⇒true: delete all values from M1 model

defaultValueLiteral X
unsettable X

X
derived X same as transient

eContainingClass X
ERefence

containment X M1 instances not contained in other object
X M1 instances contained in other object

resolveProxies X ignored
eOpposite X

EAttribute

iD X all values of the structural feature are unique
X non unique values exist

EClass

abstract X true⇒false
X false⇒true: instances of the class not required

X false⇒true: Instances required: not resolvable
interface X X X same as abstract

eSuperTypes X added/removed super type empty
X added super type contains non-mandatory features

X removed super type contains structural features
X added super type contains mandatory features

eStructuralFeatures X added feature not mandatory
X feature removed

X added feature mandatory
eOperations X

EEnum

eLiterals X literals added
X literals removed, no refering M1 entities

X otherwise

EEnumLiteral

value ignored due to atomicity of enum literals
instance same as value

literal same as value
eEnum same as value

Table D.2: Classification of Structural Featura Changes in Ecore

Appendix E

Change Classes Hierarchy

81

82
A

P
P

E
N

D
IX

E
.

C
H

A
N

G
E

C
L
A

S
S
E

S
H

IE
R

A
R

C
H

Y

Rename

PackageChange
NSURIChange NSPrefixChange

ClassChange
InterfaceChangeAbstractChange

AttributeChange

StructuralFeatureChange

UniqueChange

UnsettableChangeTransientChange

ChangeableChange

TypeChange

VolatileChange

DerivedChange

DefaultValueLiteralChange

IDChange

OrderedChange

ReferenceChange

OperationChange

TypedElementChange

ContainmentChange ResolveProxiesChange

AttributeAdd AttributeDelete

OppositeChange

AttributeMove

ReferenceAdd ReferenceMoveReferenceDelete

Delete Move

PackageAdd PackageMovePackageDelete

OperationDelete

Change

ClassAdd

Add

OperationMove

ParameterMoveParameterDelete

OperationAdd

ParameterAdd

ClassDelete ClassMove

ParameterChange

Figure E.1: Change Classes Hierarchy

Bibliography

[AC07] Alfonso Pierantonio Antonio Cicchetti, Davide Di Ruscio. A metamodel
independent approach to difference representation. Technical report, Di-
partimento di Informatica at the University of L’Aquilal, 2007.

[AHK06] Michael Altenhofen, Thomas Hettel, and Stefan Kusterer. OCL support
in an industrial environment. In Thomas Kühne, editor, MoDELS Work-
shops, volume 4364 of Lecture Notes in Computer Science, pages 169–178.
Springer, 2006.

[AMW] Eclipse.org, Atlas Model Weaver (AMW).
http://www.eclipse.org/gmt/amw/.

[AP03] Marcus Alanen and Ivan Porres. Difference and union of models. In
Perdita Stevens, Jon Whittle, and Grady Booch, editors, UML, volume
2863 of Lecture Notes in Computer Science, pages 2–17. Springer, 2003.

[ATL] Eclipse.org, Atlas Transformation Language (ATL).
http://www.eclipse.org/m2m/atl/.

[Bar93] Ludwig Von Bartalanffy. General System Theory: Foundations, Develop-
ment, Applications. Georges Braziller, Inc., 1993.

[BD96] Michael Bertol and Volker Diekert. Trace rewriting: Computing normal
forms in time o(n log n). In STACS ’96: Proceedings of the 13th Annual
Symposium on Theoretical Aspects of Computer Science, pages 269–280,
London, UK, 1996. Springer-Verlag.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, Reading, Massachusetts, 2000.

[BG07] Richard F. Paige Boris Gruschko, Dimitrios S. Kolovos. Ctowards syn-
chronizing models with evolving metamodels. In Workshop on Model-
Driven Software Evolution (MODSE 2007), Amsterdam, the Netherlands,
2007. 11th European Conference on Software Maintenance and Reengi-
neeringn.

[BGGK07] Steffen Becker, Thomas Goldschmidt, Boris Gruschko, and Heiko Kozi-
olek. A process model and classification scheme for semi-automatic
meta-model evolution. In Workshop MDD, SOA und IT-Management
(MSI2007), 2007.

[BHJ+00] Philip A. Bernstein, Laura M. Haas, Matthias Jarke, Erhard Rahm, and
Gio Wiederhold. Panel: Is generic metadata management feasible? In
The VLDB Journal, pages 660–662, 2000.

83

84 BIBLIOGRAPHY

[BPD] Business Process Definition Metamodel (BPDM). http://www.omg.org/.

[BPM06] Business Process Modeling Notation (BPMN) Specification.
http://www.bpmn.org, May 5 2006.

[BRJ05] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling
Language User Guide, The (2nd Edition) (Addison-Wesley Object Tech-
nology Series). Addison-Wesley Professional, 2005.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming
: Methods, Tools, and Applications. Addison-Wesley, Boston et. al., 2000.
ISBN: 0-201-30977-7.

[CH03] K. Czarnecki and S. Helsen. Classification of model transformation ap-
proaches. Proceedings of the 2nd OOPSLA Workshop on Generative Tech-
niques in the Context of the Model Driven Architecture, 2003.

[EMF] Eclipse.org, Eclipse Modeling Framework (EMF).
http://www.eclipse.org/modeling/emf/.

[Eva03] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, August 2003.

[FB03] Ed Merks Raymond Ellersick Timothy J. Grose Frank Budinsky,
David Steinberg. Eclipse Modeling Framework: A Developer’s Guide.
Addison-Wesley Professional, 2003.

[Fen94] Norman Fenton. Software measurement: A necessary scientific basis.
IEEE Transactions on Software Engineering, 20(3):199–206, March 1994.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading/MA, 1995.

[Gir06] Martin Girschick. Difference detection and visualization in uml class
diagrams. Technical report, TU Darmstadt, 2006.

[GME] The Generic Modeling Environment (GME).
http://www.isis.vanderbilt.edu/projects/gme/.

[Goo04] Paul Goodman. Software Metrics: Best Practices for Successful IT Man-
agement. Rothstein Associates Inc, 2004.

[Gru07] Boris Gruschko. Changes classification in M2 models. In Wolf-Gideon
Bleek, Henning Schwentner, and Heinz Züllighoven, editors, Software En-
gineering (Workshops), volume 106 of LNI, pages 277–280. GI, 2007.

[Här69] Holden Härtl. Implizite Informationen:Sprachliche Ökonomie und inter-
pretative Komplexität bei Verben. PhD thesis, Humboldt-Universität zu
Berlin, 07 1969.

[Jac86] Ivar Jacobson. Language support for changeable large real time systems.
In OOPLSA ’86: Conference proceedings on Object-oriented programming
systems, languages and applications, pages 377–384, New York, NY, USA,
1986. ACM Press.

BIBLIOGRAPHY 85

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The unified soft-
ware development process. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[Jou05] Frédéric Jouault. Loosely coupled traceability for atl, 2005. ISBN=82-
14-03813-8.

[Kru03] Philippe Kruchten. The Rational Unified Process: An Introduction.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[Lay06] Henry Laycock. Object. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Winter 2006.

[LB85] Manny Lehman and Les Belady. Program Evolution: Processes of Soft-
ware Change. London Academic Press, London, 1985.

[LB06] Linda M. Laird and M. Carol Brennan. Software Measurement and Es-
timation: A Practical Approach (Quantitative Software Engineering Se-
ries). Wiley-IEEE Computer Society Pr, 2006.

[Leh69] M. M. Lehman. The programming process. Research Report RC 2722,
IBM T. J. Watson Research Center, Yorktown Heights , NY , USA,
September 1969.

[Leh96] M. M. Lehman. Laws of software evolution revisited. In Carlo Mon-
tangero, editor, EWSPT, volume 1149 of Lecture Notes in Computer Sci-
ence, pages 108–124. Springer, 1996.

[Lie06] Benjamin A. Lieberman. The Art of Software Modeling. Auerbach Pub-
lications, Boston, MA, USA, 2006.

[mat] Eclipse.org, AMW Use Case - Matching.
http://www.eclipse.org/gmt/amw/usecases/matching/.

[McM95] Paul E. McMahon. Pattern-based architecture: Bridging software reuse
and cost management. CrossTalk - The Journal of Defense Software
Engineering, 1995.

[MEd] MetaEdit+, Domain specific modeling tool. http://www.metacase.com/.

[Mel04] Sergey Melnik. Generic Model Management: Concepts and Algorithms,
volume 2967 of Lecture Notes in Computer Science. Springer, 2004.

[Mey88] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[MOF06] Meta Object Facility Core Specification version 2.0.
http://www.omg.org/, 2006. formal/06-01-01.

[NZR07] Leila Naslavsky, Hadar Ziv, and Debra J. Richardson. Towards trace-
ability of model-based testing artifacts. In A-MOST ’07: Proceedings of
the 3rd international workshop on Advances in model-based testing, pages
105–114, New York, NY, USA, 2007. ACM Press.

[OMG] Object Management Group (OMG). http://www.omg.org/.

[Pre00] Roger S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill Higher Education, 2000.

86 BIBLIOGRAPHY

[Rac95] L. B. S. Raccoon. The chaos model and the chaos life cycle. Software
Engineering Notes, 20(1):55–66, January 1995.

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch, editors. The Unified
Modeling Language reference manual. Addison-Wesley Longman Ltd.,
Essex, UK, UK, 1999.

[RL06] Romain Robbes and Michele Lanza. Change-based software evolution.
In Proceedings of EVOL 2006 (1st International ERCIM Workshop on
Challenges in Software Evolution), pages 159–164, 2006.

[Roy70] Winston W. Royce. Managing the development of large software systems:
Concepts and techniques. In WESCON Technical Papers, v. 14, pages
A/1–1–A/1–9, Los Angeles, August 1970. WESCON. Reprinted in Pro-
ceedings of the Ninth International Conference on Software Engineering,
1987, pp. 328–338.

[SK04] Jonathan Sprinkle and Gabor Karsai. A domain-specific visual language
for domain model evolution. J. Vis. Lang. Comput, 15(3-4):291–307,
2004.

[SLKN01] Jonathan Sprinkle, Ákos Lédeczi, Gabor Karsai, and Greg Nordstrom.
The new metamodeling generation. In ECBS, page 275. IEEE Computer
Society, 2001.

[Spr03] Jonathan Mark Sprinkle. Metamodel driven model migration. PhD thesis,
2003. Director-Gabor Karsai.

[SVC06] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven
Software Development: Technology, Engineering, Management. John Wi-
ley & Sons, 2006.

[Swo00] Chris Swoyer. Properties. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Winter 2000.

[TBWK07] Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. Difference
computation of large models. In ESEC-FSE ’07: Proceedings of the the
6th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering,
pages 295–304, New York, NY, USA, 2007. ACM Press.

[Whi06] Stephen A. White. Introduction to BPMN. Whitepaper, October 16
2006. http://www.bpmn.org.

	Introduction
	Motivation: Software Evolution Causes Software Complexity
	Approaches to Evolution and Complexity Problem
	Scope of this Thesis

	MDSD: Predecessors. Complexity Issues
	Software Development Process Perspective
	Traditional development process
	Agile software development methodologies

	Modeling Approaches
	Software Modeling
	Problem Modeling
	Mapping between Domain and Solution Spaces

	Software Decomposition Perspective
	Component Technologies
	Frameworks
	Generative Programming

	Model-Driven Software Development
	Frameworks and Applications
	Model-Driven Change Management

	Motivation: Why SAP Goes for MDSD?
	Summary

	MDSD: Notions and Concepts
	Definition of Main Notions
	Model-Driven Design
	Model-Driven Development

	Meta-Modeling Explained
	Levels of Meta-Modeling
	Modeling as Formal Real World Description
	Relation between models and the meta-meta-model
	Ecore Meta-Meta-Model Structure

	MDSD Tool Support

	Metamodel Evolution Problem Analysis
	Problem Description
	Example: Meta-Model Changes

	Changes Classification
	Proposed General Workflow for Model Migration
	Change Detection Approaches
	Direct Comparison
	Change Tracing

	Related Work
	Domain Evolution. Description of Domain Model Migration
	Change Classification and Representation
	Automatic Difference Detection

	Summary

	EMF Tracing Approach For Change Detection
	Tracing in Computer Science
	Generic EMF Tracer
	Change meta-model

	Ecore Semantics: Influence to the M1 models
	EMF Tracer Semantical Constraints: Containments
	EMF Tracer Semantical Constraints: Referenced Objects
	EMF Tracer Semantical Constraints: One-to-many References

	Tracing the meta-model Changes with the EMF Tracer
	Trace Refinement Problem Description

	Trace Refinement
	Requirements to the meta-model For Change Classification
	Semantics of Ecore Modeling Concepts
	Composite Changes Analysis
	Additions
	Deletions
	Changes of StructuralFeatures

	Design of the Refined meta-model
	Composite Changes
	Change Classification Structure
	Association Classes
	Association Classes Structure

	Transforming Change MM to the Refined MM
	Transformation Configuration
	Initializing Transformation
	Refining Transformation
	Scalability with Meta-Model Size

	Conclusions and Future Work
	Summary
	Results and Conclusions
	Future Work

	Change Metamodel Complete
	Ecore Meta-Meta-Model Complete
	XMI Representation
	XMI Representation of BPMN Process Model
	XMI Representation of BPMN Meta Model

	Classification of Ecore Meta Model Changes
	Change Classes Hierarchy

